These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 27034319)
1. A two-stage rotary blood pump design with potentially lower blood trauma: a computational study. Thamsen B; Mevert R; Lommel M; Preikschat P; Gaebler J; Krabatsch T; Kertzscher U; Hennig E; Affeld K Int J Artif Organs; 2016 Jun; 39(4):178-83. PubMed ID: 27034319 [TBL] [Abstract][Full Text] [Related]
2. The Progress in the Novel Pediatric Rotary Blood Pump Sputnik Development. Telyshev D; Denisov M; Pugovkin A; Selishchev S; Nesterenko I Artif Organs; 2018 Apr; 42(4):432-443. PubMed ID: 29508416 [TBL] [Abstract][Full Text] [Related]
3. Experimental and Numerical Investigation of an Axial Rotary Blood Pump. Schüle CY; Thamsen B; Blümel B; Lommel M; Karakaya T; Paschereit CO; Affeld K; Kertzscher U Artif Organs; 2016 Nov; 40(11):E192-E202. PubMed ID: 27087467 [TBL] [Abstract][Full Text] [Related]
4. Numerical Analysis of Blood Damage Potential of the HeartMate II and HeartWare HVAD Rotary Blood Pumps. Thamsen B; Blümel B; Schaller J; Paschereit CO; Affeld K; Goubergrits L; Kertzscher U Artif Organs; 2015 Aug; 39(8):651-9. PubMed ID: 26234447 [TBL] [Abstract][Full Text] [Related]
5. Effect of the Center Post Establishment and Its Design Variations on the Performance of a Centrifugal Rotary Blood Pump. Fang P; Du J; Yu S Cardiovasc Eng Technol; 2020 Aug; 11(4):337-349. PubMed ID: 32410073 [TBL] [Abstract][Full Text] [Related]
6. Development of design methods of a centrifugal blood pump with in vitro tests, flow visualization, and computational fluid dynamics: results in hemolysis tests. Takiura K; Masuzawa T; Endo S; Wakisaka Y; Tatsumi E; Taenaka Y; Takano H; Yamane T; Nishida M; Asztalos B; Konishi Y; Miyazoe Y; Ito K Artif Organs; 1998 May; 22(5):393-8. PubMed ID: 9609347 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of hydraulic radial forces on the impeller by the volute in a centrifugal rotary blood pump. Boehning F; Timms DL; Amaral F; Oliveira L; Graefe R; Hsu PL; Schmitz-Rode T; Steinseifer U Artif Organs; 2011 Aug; 35(8):818-25. PubMed ID: 21843297 [TBL] [Abstract][Full Text] [Related]
8. Blood trauma potential of the HeartWare Ventricular Assist Device in pediatric patients. Granegger M; Thamsen B; Schlöglhofer T; Lach S; Escher A; Haas T; Meboldt M; Schweiger M; Hübler M; Zimpfer D J Thorac Cardiovasc Surg; 2020 Apr; 159(4):1519-1527.e1. PubMed ID: 31444074 [TBL] [Abstract][Full Text] [Related]
9. A passive magnetically and hydrodynamically suspended rotary blood pump. Stoiber M; Grasl C; Pirker S; Raderer F; Schistek R; Huber L; Gittler P; Schima H Artif Organs; 2009 Mar; 33(3):250-7. PubMed ID: 19245524 [TBL] [Abstract][Full Text] [Related]
10. Design and Hemocompatibility Analysis of a Double-Suction Injection Suspension Blood Pump Using Computational Fluid Dynamics Methods. Wu Y; Zhu L; Luo Y Artif Organs; 2017 Nov; 41(11):979-987. PubMed ID: 28744907 [TBL] [Abstract][Full Text] [Related]
11. Investigation of the influence of blade configuration on the hemodynamic performance and blood damage of the centrifugal blood pump. Li Y; Yu J; Wang H; Xi Y; Deng X; Chen Z; Fan Y Artif Organs; 2022 Sep; 46(9):1817-1832. PubMed ID: 35436361 [TBL] [Abstract][Full Text] [Related]
12. Investigation of the Axial Gap Clearance in a Hydrodynamic-Passive Magnetically Levitated Rotary Blood Pump Using X-Ray Radiography. Thamsen B; Plamondon M; Granegger M; Schmid Daners M; Kaufmann R; Neels A; Meboldt M Artif Organs; 2018 May; 42(5):510-515. PubMed ID: 29341175 [TBL] [Abstract][Full Text] [Related]
13. Development of Inspired Therapeutics Pediatric VAD: Computational Analysis and Characterization of VAD V3. Tompkins LH; Gellman BN; Prina SR; Morello GF; Roussel T; Kopechek JA; Williams SJ; Petit PC; Slaughter MS; Koenig SC; Dasse KA Cardiovasc Eng Technol; 2022 Aug; 13(4):624-637. PubMed ID: 35013917 [TBL] [Abstract][Full Text] [Related]
14. Computational and experimental evaluation of the fluid dynamics and hemocompatibility of the CentriMag blood pump. Zhang J; Gellman B; Koert A; Dasse KA; Gilbert RJ; Griffith BP; Wu ZJ Artif Organs; 2006 Mar; 30(3):168-77. PubMed ID: 16480391 [TBL] [Abstract][Full Text] [Related]
15. Hemodynamic investigation of a novel rotary displacement blood pump for extracorporeal membrane oxygenation. Xue Q; Ren X; Gao B; Li S; Song Z; Ding J; Chang Y Int J Numer Method Biomed Eng; 2023 Jun; 39(6):e3705. PubMed ID: 37005088 [TBL] [Abstract][Full Text] [Related]
16. Computational characterization of flow and blood damage potential of the new maglev CH-VAD pump versus the HVAD and HeartMate II pumps. Zhang J; Chen Z; Griffith BP; Wu ZJ Int J Artif Organs; 2020 Oct; 43(10):653-662. PubMed ID: 32043405 [TBL] [Abstract][Full Text] [Related]
17. Computational modeling of the Food and Drug Administration's benchmark centrifugal blood pump. Good BC; Manning KB Artif Organs; 2020 Jul; 44(7):E263-E276. PubMed ID: 31971269 [TBL] [Abstract][Full Text] [Related]
18. High-frequency operation of pulsatile ventricular assist devices: A computational study on circular and elliptically shaped pumps. Loosli C; Rupp S; Thamsen B; Rebholz M; Kress G; Meboldt M; Ermanni P Int J Artif Organs; 2019 Dec; 42(12):725-734. PubMed ID: 31277562 [TBL] [Abstract][Full Text] [Related]
19. Shear stress and blood trauma under constant and pulse-modulated speed CF-VAD operations: CFD analysis of the HVAD. Chen Z; Jena SK; Giridharan GA; Sobieski MA; Koenig SC; Slaughter MS; Griffith BP; Wu ZJ Med Biol Eng Comput; 2019 Apr; 57(4):807-818. PubMed ID: 30406881 [TBL] [Abstract][Full Text] [Related]
20. Validation of an axial flow blood pump: computational fluid dynamics results using particle image velocimetry. Su B; Chua LP; Wang X Artif Organs; 2012 Apr; 36(4):359-67. PubMed ID: 22040356 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]