These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 27034319)

  • 21. New versatile dual-support pediatric heart pump.
    Fox C; Sarkisyan H; Stevens R; Arabia F; Fischer W; Rossano J; Throckmorton A
    Artif Organs; 2019 Nov; 43(11):1055-1064. PubMed ID: 31162850
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flow characteristics and hemolytic performance of the new Breethe centrifugal blood pump in comparison with the CentriMag and Rotaflow pumps.
    He G; Zhang J; Shah A; Berk ZB; Han L; Dong H; Griffith BP; Wu ZJ
    Int J Artif Organs; 2021 Nov; 44(11):829-837. PubMed ID: 34494469
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluid dynamics aspects of miniaturized axial-flow blood pump.
    Kang C; Huang Q; Li Y
    Biomed Mater Eng; 2014; 24(1):723-9. PubMed ID: 24211957
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CFD-Based Flow Channel Optimization and Performance Prediction for a Conical Axial Maglev Blood Pump.
    Yang W; Peng S; Xiao W; Hu Y; Wu H; Li M
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214544
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational fluid dynamics analysis of blade tip clearances on hemodynamic performance and blood damage in a centrifugal ventricular assist device.
    Wu J; Paden BE; Borovetz HS; Antaki JF
    Artif Organs; 2010 May; 34(5):402-11. PubMed ID: 19832736
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multivariate Assessment of the Effect of Pump Design and Pump Gap Design Parameters on Blood Trauma.
    Graefe R; Henseler A; Steinseifer U
    Artif Organs; 2016 Jun; 40(6):568-76. PubMed ID: 26636662
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Centrifugal blood pump for temporary ventricular assist devices with low priming and ceramic bearings.
    Leme J; da Silva C; Fonseca J; da Silva BU; Uebelhart B; Biscegli JF; Andrade A
    Artif Organs; 2013 Nov; 37(11):942-5. PubMed ID: 24219168
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Review of Hemolysis Prediction Models for Computational Fluid Dynamics.
    Yu H; Engel S; Janiga G; Thévenin D
    Artif Organs; 2017 Jul; 41(7):603-621. PubMed ID: 28643335
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Study of flow-induced hemolysis using novel Couette-type blood-shearing devices.
    Zhang T; Taskin ME; Fang HB; Pampori A; Jarvik R; Griffith BP; Wu ZJ
    Artif Organs; 2011 Dec; 35(12):1180-6. PubMed ID: 21810113
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational fluid dynamics analysis to establish the design process of a centrifugal blood pump: second report.
    Miyazoe Y; Sawairi T; Ito K; Konishi Y; Yamane T; Nishida M; Asztalos B; Masuzawa T; Tsukiya T; Endo S; Taenaka Y
    Artif Organs; 1999 Aug; 23(8):762-8. PubMed ID: 10463504
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Numerical investigation on hydrodynamics and biocompatibility of a magnetically suspended axial blood pump.
    Zhu X; Zhang M; Zhang G; Liu H
    ASAIO J; 2006; 52(6):624-9. PubMed ID: 17117050
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of leakage flow in a shrouded centrifugal blood pump.
    Teo JB; Chan WK; Wong YW
    Artif Organs; 2010 Sep; 34(9):788-91. PubMed ID: 20883397
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Numerical study of a bio-centrifugal blood pump with straight impeller blade profiles.
    Song G; Chua LP; Lim TM
    Artif Organs; 2010 Feb; 34(2):98-104. PubMed ID: 19817732
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of volute design features on hemodynamic performance and hemocompatibility of centrifugal blood pumps used in ECMO.
    Li Y; Wang H; Xi Y; Sun A; Deng X; Chen Z; Fan Y
    Artif Organs; 2023 Jan; 47(1):88-104. PubMed ID: 35962603
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flow features and device-induced blood trauma in CF-VADs under a pulsatile blood flow condition: A CFD comparative study.
    Chen Z; Jena SK; Giridharan GA; Koenig SC; Slaughter MS; Griffith BP; Wu ZJ
    Int J Numer Method Biomed Eng; 2018 Feb; 34(2):. PubMed ID: 28859253
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design optimization of blood shearing instrument by computational fluid dynamics.
    Wu J; Antaki JF; Snyder TA; Wagner WR; Borovetz HS; Paden BE
    Artif Organs; 2005 Jun; 29(6):482-9. PubMed ID: 15926986
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of computational fluid dynamics techniques to blood pumps.
    Sukumar R; Athavale MM; Makhijani VB; Przekwas AJ
    Artif Organs; 1996 Jun; 20(6):529-33. PubMed ID: 8817950
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The spiral groove bearing as a mechanism for enhancing the secondary flow in a centrifugal rotary blood pump.
    Amaral F; Gross-Hardt S; Timms D; Egger C; Steinseifer U; Schmitz-Rode T
    Artif Organs; 2013 Oct; 37(10):866-74. PubMed ID: 23635098
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A validated computational fluid dynamics model to estimate hemolysis in a rotary blood pump.
    Arvand A; Hormes M; Reul H
    Artif Organs; 2005 Jul; 29(7):531-40. PubMed ID: 15982281
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Numerical simulation of an axial blood pump.
    Chua LP; Su B; Lim TM; Zhou T
    Artif Organs; 2007 Jul; 31(7):560-70. PubMed ID: 17584481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.