BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 2703465)

  • 1. Evidence that the transcription activator encoded by the Pseudomonas putida nahR gene is evolutionarily related to the transcription activators encoded by the Rhizobium nodD genes.
    Schell MA; Sukordhaman M
    J Bacteriol; 1989 Apr; 171(4):1952-9. PubMed ID: 2703465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of saturation mutagenesis to localize probable functional domains in the NahR protein, a LysR-type transcription activator.
    Schell MA; Brown PH; Raju S
    J Biol Chem; 1990 Mar; 265(7):3844-50. PubMed ID: 2406264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demonstration, characterization, and mutational analysis of NahR protein binding to nah and sal promoters.
    Schell MA; Poser EF
    J Bacteriol; 1989 Feb; 171(2):837-46. PubMed ID: 2914873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. nahR, encoding a LysR-type transcriptional regulator, is highly conserved among naphthalene-degrading bacteria isolated from a coal tar waste-contaminated site and in extracted community DNA.
    Park W; Padmanabhan P; Padmanabhan S; Zylstra GJ; Madsen EL
    Microbiology (Reading); 2002 Aug; 148(Pt 8):2319-2329. PubMed ID: 12177326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homology between nucleotide sequences of promoter regions of nah and sal operons of NAH7 plasmid of Pseudomonas putida.
    Schell MA
    Proc Natl Acad Sci U S A; 1986 Jan; 83(2):369-73. PubMed ID: 3001734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo interactions of the NahR transcriptional activator with its target sequences. Inducer-mediated changes resulting in transcription activation.
    Huang JZ; Schell MA
    J Biol Chem; 1991 Jun; 266(17):10830-8. PubMed ID: 2040603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleotide sequence of plasmid NAH7 gene nahR and DNA binding of the nahR product.
    You IS; Ghosal D; Gunsalus IC
    J Bacteriol; 1988 Dec; 170(12):5409-15. PubMed ID: 2848005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional control of the nah and sal hydrocarbon-degradation operons by the nahR gene product.
    Schell MA
    Gene; 1985; 36(3):301-9. PubMed ID: 3908220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NahR: effects of replacements at Asn 169 and Arg 248 on promoter binding and inducer recognition.
    Park HH; Lee HY; Lim WK; Shin HJ
    Arch Biochem Biophys; 2005 Feb; 434(1):67-74. PubMed ID: 15629110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA sequence and translational product of a new nodulation-regulatory locus: syrM has sequence similarity to NodD proteins.
    Barnett MJ; Long SR
    J Bacteriol; 1990 Jul; 172(7):3695-700. PubMed ID: 2361944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleotide sequence analysis of 5'-flanking region of salicylate hydroxylase gene, and identification and purification of a LysR-type regulator, SalR.
    Sato H; Kudo S; Ohnishi K; Mizuguchi M; Goto E; Suzuki K
    Eur J Biochem; 2001 Apr; 268(8):2229-38. PubMed ID: 11298739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple copies of nodD in Rhizobium tropici CIAT899 and BR816.
    van Rhijn PJ; Feys B; Verreth C; Vanderleyden J
    J Bacteriol; 1993 Jan; 175(2):438-47. PubMed ID: 8419293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of the nahR gene product and nucleotide sequences required for its activation of the sal operon.
    Schell MA; Wender PE
    J Bacteriol; 1986 Apr; 166(1):9-14. PubMed ID: 3007442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homology of the ligand-binding regions of Rhizobium symbiotic regulatory protein NodD and vertebrate nuclear receptors.
    Györgypal Z; Kondorosi A
    Mol Gen Genet; 1991 Apr; 226(1-2):337-40. PubMed ID: 1851955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of NodD at the nod Box: NodD binds to two distinct sites on the same face of the helix and induces a bend in the DNA.
    Fisher RF; Long SR
    J Mol Biol; 1993 Oct; 233(3):336-48. PubMed ID: 8411148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhizobium japonicum USDA 191 has two nodD genes that differ in primary structure and function.
    Appelbaum ER; Thompson DV; Idler K; Chartrain N
    J Bacteriol; 1988 Jan; 170(1):12-20. PubMed ID: 2826389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of NahR, a LysR-type transcriptional regulator, with the alpha subunit of RNA polymerase in the naphthalene degrading bacterium, Pseudomonas putida NCIB 9816-4.
    Park W; Jeon CO; Madsen EL
    FEMS Microbiol Lett; 2002 Aug; 213(2):159-65. PubMed ID: 12167532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complete nucleotide sequence and evolutionary significance of a chromosomally encoded naphthalene-degradation lower pathway from Pseudomonas stutzeri AN10.
    Bosch R; García-Valdés E; Moore ER
    Gene; 2000 Mar; 245(1):65-74. PubMed ID: 10713446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effector specificity mutants of the transcriptional activator NahR of naphthalene degrading Pseudomonas define protein sites involved in binding of aromatic inducers.
    Cebolla A; Sousa C; de Lorenzo V
    J Biol Chem; 1997 Feb; 272(7):3986-92. PubMed ID: 9020104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleotide sequence of salicylate hydroxylase gene and its 5'-flanking region of Pseudomonas putida KF715.
    Lee J; Oh J; Min KR; Kim Y
    Biochem Biophys Res Commun; 1996 Jan; 218(2):544-8. PubMed ID: 8561793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.