These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 2703466)

  • 81. Nucleotide sequence analysis of IS1533 from Leptospira borgpetersenii: identification and expression of two IS-encoded proteins.
    Zuerner RL
    Plasmid; 1994 Jan; 31(1):1-11. PubMed ID: 8171119
    [TBL] [Abstract][Full Text] [Related]  

  • 82. DNA sequence and units of transcription of the conjugative transfer gene complex (trs) of Staphylococcus aureus plasmid pGO1.
    Morton TM; Eaton DM; Johnston JL; Archer GL
    J Bacteriol; 1993 Jul; 175(14):4436-47. PubMed ID: 7687249
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Identification of a second flagellin gene and functional characterization of a sigma70-like promoter upstream of a Leptospira borgpetersenii flaB gene.
    Lin M; Dan H; Li Y
    Curr Microbiol; 2004 Feb; 48(2):145-52. PubMed ID: 15057484
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Deoxynucleotide sequence conservation of the endoflagellin subunit protein gene, flaB, within the genus Leptospira.
    Woodward MJ; Redstone JS
    Vet Microbiol; 1994 Jun; 40(3-4):239-51. PubMed ID: 7941289
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Anthranilate synthase subunit organization in Chromobacterium violaceum.
    Carminatti CA; Oliveira IL; Recouvreux DO; Antônio RV; Porto LM
    Genet Mol Res; 2008 Sep; 7(3):830-8. PubMed ID: 18949702
    [TBL] [Abstract][Full Text] [Related]  

  • 86. First evidence for gene replacement in Leptospira spp. Inactivation of L. biflexa flaB results in non-motile mutants deficient in endoflagella.
    Picardeau M; Brenot A; Saint Girons I
    Mol Microbiol; 2001 Apr; 40(1):189-99. PubMed ID: 11298286
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Biochemical genetics of tryptophan synthesis in Pseudomonas acidovorans.
    Buvinger WE; Stone LC; Heath HE
    J Bacteriol; 1981 Jul; 147(1):62-8. PubMed ID: 7240095
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Gut Microbiota Metabolite Indole Propionic Acid Targets Tryptophan Biosynthesis in
    Negatu DA; Yamada Y; Xi Y; Go ML; Zimmerman M; Ganapathy U; Dartois V; Gengenbacher M; Dick T
    mBio; 2019 Mar; 10(2):. PubMed ID: 30914514
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Characterization of Bacillus caldotenax anthranilate synthase I produced in Escherichia coli and identification of its essential arginine residue by site-directed mutagenesis.
    Shiratsuchi A; Sato S
    J Biochem; 1992 Nov; 112(5):714-8. PubMed ID: 1478932
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Analysis of feedback-resistant anthranilate synthases from Saccharomyces cerevisiae.
    Graf R; Mehmann B; Braus GH
    J Bacteriol; 1993 Feb; 175(4):1061-8. PubMed ID: 8432699
    [TBL] [Abstract][Full Text] [Related]  

  • 91. rpoB gene analysis as a novel strategy for identification of spirochetes from the genera Borrelia, Treponema, and Leptospira.
    Renesto P; Lorvellec-Guillon K; Drancourt M; Raoult D
    J Clin Microbiol; 2000 Jun; 38(6):2200-3. PubMed ID: 10834976
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Context effects on nonsense codon suppression in Escherichia coli.
    Feinstein SI; Altman S
    Genetics; 1978 Feb; 88(2):201-19. PubMed ID: 346437
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The fused anthranilate synthase from Streptomyces venezuelae functions as a monomer.
    Ashenafi M; Reddy PT; Parsons JF; Byrnes WM
    Mol Cell Biochem; 2015 Feb; 400(1-2):9-15. PubMed ID: 25355158
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Development of a trpE promoter-strength measuring system and its use in comparison of the trpEDCBA, trpR and aroH promoters.
    Cho KO; Yanofsky C
    J Mol Biol; 1988 Nov; 204(1):41-50. PubMed ID: 3063826
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Heme rescues a two-component system Leptospira biflexa mutant.
    Louvel H; Betton JM; Picardeau M
    BMC Microbiol; 2008 Jan; 8():25. PubMed ID: 18234085
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Screening of a Leptospira biflexa mutant library to identify genes involved in ethidium bromide tolerance.
    Pětrošová H; Picardeau M
    Appl Environ Microbiol; 2014 Oct; 80(19):6091-103. PubMed ID: 25063661
    [TBL] [Abstract][Full Text] [Related]  

  • 97. A widely conserved bacterial cytoskeletal component influences unique helical shape and motility of the spirochete Leptospira biflexa.
    Jackson KM; Schwartz C; Wachter J; Rosa PA; Stewart PE
    Mol Microbiol; 2018 Apr; 108(1):77-89. PubMed ID: 29363884
    [TBL] [Abstract][Full Text] [Related]  

  • 98. The nucleotide sequence of the first externally suppressible--1 frameshift mutant, and of some nearby leaky frameshift mutants.
    Atkins JF; Nichols BP; Thompson S
    EMBO J; 1983; 2(8):1345-50. PubMed ID: 10872329
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Protein folding within the cell is influenced by controlled rates of polypeptide elongation.
    Crombie T; Swaffield JC; Brown AJ
    J Mol Biol; 1992 Nov; 228(1):7-12. PubMed ID: 1447795
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Characterization of the Bat proteins in the oxidative stress response of Leptospira biflexa.
    Stewart PE; Carroll JA; Dorward DW; Stone HH; Sarkar A; Picardeau M; Rosa PA
    BMC Microbiol; 2012 Dec; 12():290. PubMed ID: 23234440
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.