These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 27034709)

  • 1. Evaluation of Round Window Stimulation Performance in Otosclerosis Using Finite Element Modeling.
    Yang S; Xu D; Liu X
    Comput Math Methods Med; 2016; 2016():3603207. PubMed ID: 27034709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of middle ear disorder in round-window stimulation using a finite element human ear model.
    Zhou K; Liu H; Yang J; Zhao YU; Rao Z; Yang S
    Acta Bioeng Biomech; 2019; 21(1):3-12. PubMed ID: 31197272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element analysis of round-window stimulation of the cochlea in patients with stapedial otosclerosis.
    Zhang J; Tian J; Ta N; Rao Z
    J Acoust Soc Am; 2019 Dec; 146(6):4122. PubMed ID: 31893738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A three-dimensional finite element model of round window membrane vibration before and after stapedotomy surgery.
    Kwacz M; Marek P; Borkowski P; Mrówka M
    Biomech Model Mechanobiol; 2013 Nov; 12(6):1243-61. PubMed ID: 23462937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of static force on round window stimulation with the direct acoustic cochlea stimulator.
    Maier H; Salcher R; Schwab B; Lenarz T
    Hear Res; 2013 Jul; 301():115-24. PubMed ID: 23276731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Comparison of differental intracochlear pressures between round window stimulation and ear canal stimulation].
    Wang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Dec; 29(6):1109-13. PubMed ID: 23469540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of ossicular chain malformation on the performance of round-window stimulation: A finite element approach.
    Liu H; Zhang H; Yang J; Huang X; Liu W; Xue L
    Proc Inst Mech Eng H; 2019 May; 233(5):584-594. PubMed ID: 30919729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the influence of the transducer and its coupling layer on round window stimulation.
    Liu H; Xu D; Yang J; Yang S; Cheng G; Huang X
    Acta Bioeng Biomech; 2017; 19(2):103-111. PubMed ID: 28869639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Third-window vibroplasty with an active middle ear implant: assessment of physiologic responses in a model of stapes fixation in Chinchilla lanigera.
    Lupo JE; Koka K; Jenkins HA; Tollin DJ
    Otol Neurotol; 2012 Apr; 33(3):425-31. PubMed ID: 22334156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prospective electrophysiologic findings of round window stimulation in a model of experimentally induced stapes fixation.
    Lupo JE; Koka K; Holland NJ; Jenkins HA; Tollin DJ
    Otol Neurotol; 2009 Dec; 30(8):1215-24. PubMed ID: 19779388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled round-window stimulation in human temporal bones yielding reproducible and functionally relevant stapedial responses.
    Schraven SP; Hirt B; Gummer AW; Zenner HP; Dalhoff E
    Hear Res; 2011 Dec; 282(1-2):272-82. PubMed ID: 21798325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Round window stimulation with the floating mass transducer at constant pretension.
    Salcher R; Schwab B; Lenarz T; Maier H
    Hear Res; 2014 Aug; 314():1-9. PubMed ID: 24727490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of auditory responses determined by acoustic stimulation and by mechanical round window stimulation at equivalent stapes velocities.
    Lee J; Seong K; Lee SH; Lee KY; Cho JH
    Hear Res; 2014 Aug; 314():65-71. PubMed ID: 24768763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrocochleographic and mechanical assessment of round window stimulation with an active middle ear prosthesis.
    Koka K; Holland NJ; Lupo JE; Jenkins HA; Tollin DJ
    Hear Res; 2010 May; 263(1-2):128-37. PubMed ID: 19720125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histologic variants in otosclerosis.
    Schuknecht HF; Barber W
    Laryngoscope; 1985 Nov; 95(11):1307-17. PubMed ID: 4058207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanism of direct stimulation of the cochlea by vibrating the round window.
    Perez R; Adelman C; Chordekar S; de Jong MA; Sohmer H
    J Basic Clin Physiol Pharmacol; 2014 Sep; 25(3):273-6. PubMed ID: 25046313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cochlear otosclerosis adjacent to round window and oval window: a histopathological temporal bone study.
    Sato T; Morita N; Cureoglu S; Terao K; Joglekar SS; Deroee AF; Ishikawa K; Paparella MM
    Otol Neurotol; 2010 Jun; 31(4):574-9. PubMed ID: 20631499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic stimulation on the round window for active middle ear implants.
    Seong K; Lee K; Puria S; Cho JH
    Comput Biol Med; 2018 Jun; 97():171-177. PubMed ID: 29747060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research on coupling effects of actuator and round window membrane on reverse stimulation of human cochlea.
    Xue L; Liu H; Yang J; Liu S; Zhao Y; Huang X
    Proc Inst Mech Eng H; 2021 Apr; 235(4):447-458. PubMed ID: 33427056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Round window otosclerosis: radiologic classification and clinical correlations.
    Mansour S; Nicolas K; Ahmad HH
    Otol Neurotol; 2011 Apr; 32(3):384-92. PubMed ID: 21221043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.