These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 27034709)

  • 21. Impedances of the inner and middle ear estimated from intracochlear sound pressures in normal human temporal bones.
    Frear DL; Guan X; Stieger C; Rosowski JJ; Nakajima HH
    Hear Res; 2018 Sep; 367():17-31. PubMed ID: 30015103
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cochlear otosclerosis with malleoincudal fixation.
    Joglekar S; Kelles M; Paparella MM
    Otol Neurotol; 2009 Jan; 30(1):125-6. PubMed ID: 18580697
    [No Abstract]   [Full Text] [Related]  

  • 23. Finite element modeling of energy absorbance in normal and disordered human ears.
    Zhang X; Gan RZ
    Hear Res; 2013 Jul; 301():146-55. PubMed ID: 23274858
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling sound transmission of human middle ear and its clinical applications using finite element analysis.
    Chen SI; Lee MH; Yao CM; Chen PR; Chou YF; Liu TC; Song YL; Lee CF
    Kaohsiung J Med Sci; 2013 Mar; 29(3):133-9. PubMed ID: 23465416
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Round window stimulation with an interface coupler demonstrates proof of concept.
    Frear DL; Nakajima HH
    Hear Res; 2022 Aug; 421():108512. PubMed ID: 35606210
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Round window membrane motion before and after stapedotomy surgery - an experimental study.
    Kwacz M; Mrowka M; Wysocki J
    Acta Bioeng Biomech; 2011; 13(3):27-33. PubMed ID: 22098054
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A tri-coil bellows-type round window transducer with improved frequency characteristics for middle-ear implants.
    Shin DH; Seong KW; Puria S; Lee KY; Cho JH
    Hear Res; 2016 Nov; 341():144-154. PubMed ID: 27594098
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of round window stimulation using the floating mass transducer by intracochlear sound pressure measurements in human temporal bones.
    Nakajima HH; Dong W; Olson ES; Rosowski JJ; Ravicz ME; Merchant SN
    Otol Neurotol; 2010 Apr; 31(3):506-11. PubMed ID: 19841600
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Performance considerations of prosthetic actuators for round-window stimulation.
    Nakajima HH; Merchant SN; Rosowski JJ
    Hear Res; 2010 May; 263(1-2):114-9. PubMed ID: 19941946
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of ossicular chain deformity on reverse stimulation considering the overflow characteristics of third windows.
    Liu H; Xue L; Yang J; Cheng G; Zhou L; Huang X
    Comput Methods Biomech Biomed Engin; 2022 Feb; 25(3):257-272. PubMed ID: 34229548
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic properties of human round window membrane in auditory frequencies running head: dynamic properties of round window membrane.
    Zhang X; Gan RZ
    Med Eng Phys; 2013 Mar; 35(3):310-8. PubMed ID: 22673004
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reinforced active middle ear implant fixation in incus vibroplasty.
    Mlynski R; Dalhoff E; Heyd A; Wildenstein D; Hagen R; Gummer AW; Schraven SP
    Ear Hear; 2015 Jan; 36(1):72-81. PubMed ID: 25099400
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of model definitions and parameter values in finite element modeling of human middle ear mechanics.
    De Greef D; Pires F; Dirckx JJ
    Hear Res; 2017 Feb; 344():195-206. PubMed ID: 27915026
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Objective assessment of stapedotomy surgery from round window motion measurement.
    Sim JH; Chatzimichalis M; Röösli C; Laske RD; Huber AM
    Ear Hear; 2012; 33(5):e24-31. PubMed ID: 22699658
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of stimulation sites on the performance of electromagnetic middle ear implant: A finite element analysis.
    Liu H; Wang W; Zhao Y; Yang J; Yang S; Huang X; Liu W
    Comput Biol Med; 2020 Sep; 124():103918. PubMed ID: 32758680
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reliability of high-resolution CT scan in diagnosis of otosclerosis.
    Lagleyre S; Sorrentino T; Calmels MN; Shin YJ; Escudé B; Deguine O; Fraysse B
    Otol Neurotol; 2009 Dec; 30(8):1152-9. PubMed ID: 19887979
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three-dimensional finite element modeling of human ear for sound transmission.
    Gan RZ; Feng B; Sun Q
    Ann Biomed Eng; 2004 Jun; 32(6):847-59. PubMed ID: 15255215
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multifield coupled finite element analysis for sound transmission in otitis media with effusion.
    Gan RZ; Wang X
    J Acoust Soc Am; 2007 Dec; 122(6):3527-38. PubMed ID: 18247761
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Finite element model of the stapes-inner ear interface.
    Böhnke F; Arnold W
    Adv Otorhinolaryngol; 2007; 65():150-154. PubMed ID: 17245037
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Measurement of stapes vibration in Human temporal bones by round window stimulation using a 3-coil transducer.
    Shin DH; Kim DW; Lim HG; Jung ES; Seong KW; Lee JH; Kim MN; Cho JH
    Biomed Mater Eng; 2014; 24(1):405-11. PubMed ID: 24211922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.