These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 27034710)

  • 1. A Novel Method for the Separation of Overlapping Pollen Species for Automated Detection and Classification.
    Tello-Mijares S; Flores F
    Comput Math Methods Med; 2016; 2016():5689346. PubMed ID: 27034710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual Recognition Software for Binary Classification and Its Application to Spruce Pollen Identification.
    Tcheng DK; Nayak AK; Fowlkes CC; Punyasena SW
    PLoS One; 2016; 11(2):e0148879. PubMed ID: 26867017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breast Cancer Identification via Thermography Image Segmentation with a Gradient Vector Flow and a Convolutional Neural Network.
    Tello-Mijares S; Woo F; Flores F
    J Healthc Eng; 2019; 2019():9807619. PubMed ID: 31915519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pollen image classification using the Classifynder system: algorithm comparison and a case study on New Zealand honey.
    Lagerstrom R; Holt K; Arzhaeva Y; Bischof L; Haberle S; Hopf F; Lovell D
    Adv Exp Med Biol; 2015; 823():207-26. PubMed ID: 25381110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precise automatic classification of 46 different pollen types with convolutional neural networks.
    Sevillano V; Holt K; Aznarte JL
    PLoS One; 2020; 15(6):e0229751. PubMed ID: 32574174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feature Extraction and Machine Learning for the Classification of Brazilian Savannah Pollen Grains.
    Gonçalves AB; Souza JS; Silva GG; Cereda MP; Pott A; Naka MH; Pistori H
    PLoS One; 2016; 11(6):e0157044. PubMed ID: 27276196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictive pollen-based biome modeling using machine learning.
    Sobol MK; Finkelstein SA
    PLoS One; 2018; 13(8):e0202214. PubMed ID: 30138366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated system for characterization and classification of malaria-infected stages using light microscopic images of thin blood smears.
    Das DK; Maiti AK; Chakraborty C
    J Microsc; 2015 Mar; 257(3):238-52. PubMed ID: 25523795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interferometer eye image classification for dry eye categorization using phylogenetic diversity indexes for texture analysis.
    da Cruz LB; Souza JC; de Sousa JA; Santos AM; de Paiva AC; de Almeida JDS; Silva AC; Junior GB; Gattass M
    Comput Methods Programs Biomed; 2020 May; 188():105269. PubMed ID: 31846832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binary tissue classification on wound images with neural networks and bayesian classifiers.
    Veredas F; Mesa H; Morente L
    IEEE Trans Med Imaging; 2010 Feb; 29(2):410-27. PubMed ID: 19825516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated pollen identification using microscopic imaging and texture analysis.
    Marcos JV; Nava R; Cristóbal G; Redondo R; Escalante-Ramírez B; Bueno G; Déniz Ó; González-Porto A; Pardo C; Chung F; Rodríguez T
    Micron; 2015 Jan; 68():36-46. PubMed ID: 25259684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A precise automatic system for the hair assessment in hair-care diagnosis applications.
    Shih H
    Skin Res Technol; 2015 Nov; 21(4):500-7. PubMed ID: 26119754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Computerized image analysis in recognition and classification of aeroallergens].
    Wawrzyniak ZM; Rapiejko P; Jachowicz RS; Jurkiewicz D
    Pol Merkur Lekarski; 2005 Sep; 19(111):315-8. PubMed ID: 16358855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Web-Enabled Distributed Health-Care Framework for Automated Malaria Parasite Classification: an E-Health Approach.
    Maity M; Dhane D; Mungle T; Maiti AK; Chakraborty C
    J Med Syst; 2017 Oct; 41(12):192. PubMed ID: 29075939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supervised learning-based cell image segmentation for p53 immunohistochemistry.
    Mao KZ; Zhao P; Tan PH
    IEEE Trans Biomed Eng; 2006 Jun; 53(6):1153-63. PubMed ID: 16761842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Principles and methods for automated palynology.
    Holt KA; Bennett KD
    New Phytol; 2014 Aug; 203(3):735-42. PubMed ID: 25180326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian segmentation of human facial tissue using 3D MR-CT information fusion, resolution enhancement and partial volume modelling.
    Şener E; Mumcuoglu EU; Hamcan S
    Comput Methods Programs Biomed; 2016 Feb; 124():31-44. PubMed ID: 26574298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated segmentation of ultrasonic breast lesions using statistical texture classification and active contour based on probability distance.
    Liu B; Cheng HD; Huang J; Tian J; Liu J; Tang X
    Ultrasound Med Biol; 2009 Aug; 35(8):1309-24. PubMed ID: 19481332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive multi-level conditional random fields for detection and segmentation of small enhanced pathology in medical images.
    Karimaghaloo Z; Arnold DL; Arbel T
    Med Image Anal; 2016 Jan; 27():17-30. PubMed ID: 26211811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Skin segmentation using color pixel classification: analysis and comparison.
    Phung SL; Bouzerdoum A; Chai D
    IEEE Trans Pattern Anal Mach Intell; 2005 Jan; 27(1):148-54. PubMed ID: 15628277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.