These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 2703484)

  • 1. Succinimide formation from aspartyl and asparaginyl peptides as a model for the spontaneous degradation of proteins.
    Stephenson RC; Clarke S
    J Biol Chem; 1989 Apr; 264(11):6164-70. PubMed ID: 2703484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation.
    Geiger T; Clarke S
    J Biol Chem; 1987 Jan; 262(2):785-94. PubMed ID: 3805008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Propensity for spontaneous succinimide formation from aspartyl and asparaginyl residues in cellular proteins.
    Clarke S
    Int J Pept Protein Res; 1987 Dec; 30(6):808-21. PubMed ID: 3440704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of adjacent histidine and cysteine residues on the spontaneous degradation of asparaginyl- and aspartyl-containing peptides.
    Brennan TV; Clarke S
    Int J Pept Protein Res; 1995 Jun; 45(6):547-53. PubMed ID: 7558585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deuteration protects asparagine residues against racemization.
    Lowenson JD; Shmanai VV; Shklyaruck D; Clarke SG; Shchepinov MS
    Amino Acids; 2016 Sep; 48(9):2189-96. PubMed ID: 27169868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous degradation of polypeptides at aspartyl and asparaginyl residues: effects of the solvent dielectric.
    Brennan TV; Clarke S
    Protein Sci; 1993 Mar; 2(3):331-8. PubMed ID: 8453372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neighboring side chain effects on asparaginyl and aspartyl degradation: an ab initio study of the relationship between peptide conformation and backbone NH acidity.
    Radkiewicz JL; Zipse H; Clarke S; Houk KN
    J Am Chem Soc; 2001 Apr; 123(15):3499-506. PubMed ID: 11472122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of a synthetic L-isoaspartyl-containing hexapeptide in erythrocyte extracts. Enzymatic methyl esterification is followed by nonenzymatic succinimide formation.
    Murray ED; Clarke S
    J Biol Chem; 1986 Jan; 261(1):306-12. PubMed ID: 3941079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid degradation of D- and L-succinimide-containing peptides by a post-proline endopeptidase from human erythrocytes.
    Momand J; Clarke S
    Biochemistry; 1987 Dec; 26(24):7798-805. PubMed ID: 3480758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous peptide bond cleavage in aging alpha-crystallin through a succinimide intermediate.
    Voorter CE; de Haard-Hoekman WA; van den Oetelaar PJ; Bloemendal H; de Jong WW
    J Biol Chem; 1988 Dec; 263(35):19020-3. PubMed ID: 3198609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conversion of isoaspartyl peptides to normal peptides: implications for the cellular repair of damaged proteins.
    McFadden PN; Clarke S
    Proc Natl Acad Sci U S A; 1987 May; 84(9):2595-9. PubMed ID: 3472227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trapping succinimides in aged polypeptides by chemical reduction.
    Carter DA; McFadden PN
    J Protein Chem; 1994 Jan; 13(1):89-96. PubMed ID: 8011075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of peptide conformation in the rate and mechanism of deamidation of asparaginyl residues.
    Lura R; Schirch V
    Biochemistry; 1988 Oct; 27(20):7671-7. PubMed ID: 3207697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous degradation and enzymatic repair of aspartyl and asparaginyl residues in aging red cell proteins analyzed by computer simulation.
    Lowenson JD; Clarke S
    Gerontology; 1991; 37(1-3):128-51. PubMed ID: 1829049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quantitative analysis of spontaneous isoaspartate formation from N-terminal asparaginyl and aspartyl residues.
    Güttler BH; Cynis H; Seifert F; Ludwig HH; Porzel A; Schilling S
    Amino Acids; 2013 Apr; 44(4):1205-14. PubMed ID: 23344882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does the chemical instability of aspartyl and asparaginyl residues in proteins contribute to erythrocyte aging? The role of protein carboxyl methylation reactions.
    Lowenson J; Clarke S
    Blood Cells; 1988; 14(1):103-18. PubMed ID: 3052632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of cyclopentyl ester protection for aspartic acid to reduce base catalyzed succinimide formation in solid-phase peptide synthesis.
    Blake J
    Int J Pept Protein Res; 1979 Apr; 13(4):418-25. PubMed ID: 457335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of the cyclic imide in alternate degradation pathways for asparagine-containing peptides and proteins.
    Dehart MP; Anderson BD
    J Pharm Sci; 2007 Oct; 96(10):2667-85. PubMed ID: 17518358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deamidation: Differentiation of aspartyl from isoaspartyl products in peptides by electron capture dissociation.
    Cournoyer JJ; Pittman JL; Ivleva VB; Fallows E; Waskell L; Costello CE; O'Connor PB
    Protein Sci; 2005 Feb; 14(2):452-63. PubMed ID: 15659375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mechanism-based kinetic analysis of succinimide-mediated deamidation, racemization, and covalent adduct formation in a model peptide in amorphous lyophiles.
    Dehart MP; Anderson BD
    J Pharm Sci; 2012 Sep; 101(9):3096-109. PubMed ID: 22271437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.