These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 2703484)

  • 21. Effects of water and polymer content on covalent amide-linked adduct formation in peptide-containing amorphous lyophiles.
    DeHart MP; Anderson BD
    J Pharm Sci; 2012 Sep; 101(9):3142-56. PubMed ID: 22437444
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Computational Study of the Mechanism of Succinimide Formation in the Asn-His Sequence: Intramolecular Catalysis by the His Side Chain.
    Takahashi O; Manabe N; Kirikoshi R
    Molecules; 2016 Mar; 21(3):327. PubMed ID: 27005609
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amino-acids and peptides. Part XVII. Synthesis of cyclo-[(O-t-butyl)-L-seryl-beta-alanyl-glycyl-(O-methyl)-L-beta-aspartyl], and observations on the rearrangement of beta-aspartyl peptides esters.
    Handa BK; Hassall CH
    J Chem Soc Perkin 1; 1976; (19):2014-9. PubMed ID: 1033193
    [No Abstract]   [Full Text] [Related]  

  • 24. Enzymatic methylation of L-isoaspartyl residues derived from aspartyl residues in affinity-purified calmodulin. The role of conformational flexibility in spontaneous isoaspartyl formation.
    Ota IM; Clarke S
    J Biol Chem; 1989 Jan; 264(1):54-60. PubMed ID: 2642479
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Methylation of microinjected isoaspartyl peptides in Xenopus oocytes. Competition with protein carboxyl methylation reactions.
    Romanik EA; O'Connor CM
    J Biol Chem; 1989 Aug; 264(24):14050-6. PubMed ID: 2760057
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Side reactions in peptide synthesis. II. Formation of succinimide derivatives from aspartyl residues.
    Bodanszky M; Natarajan S
    J Org Chem; 1975 Aug; 40(17):2495-9. PubMed ID: 1165511
    [No Abstract]   [Full Text] [Related]  

  • 27. Site-specific racemization in aging alpha A-crystallin.
    Groenen PJ; van den Ijssel PR; Voorter CE; Bloemendal H; de Jong WW
    FEBS Lett; 1990 Aug; 269(1):109-12. PubMed ID: 2387389
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reaction mechanism of deamidation of asparaginyl residues in peptides: effect of solvent molecules.
    Catak S; Monard G; Aviyente V; Ruiz-López MF
    J Phys Chem A; 2006 Jul; 110(27):8354-65. PubMed ID: 16821819
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetics and mechanisms of deamidation and covalent amide-linked adduct formation in amorphous lyophiles of a model asparagine-containing Peptide.
    Dehart MP; Anderson BD
    Pharm Res; 2012 Oct; 29(10):2722-37. PubMed ID: 22006203
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unexpected functional implication of a stable succinimide in the structural stability of Methanocaldococcus jannaschii glutaminase.
    Kumar S; Prakash S; Gupta K; Dongre A; Balaram P; Balaram H
    Nat Commun; 2016 Sep; 7():12798. PubMed ID: 27677693
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antibody-catalyzed rearrangement of the peptide bond.
    Gibbs RA; Taylor S; Benkovic SJ
    Science; 1992 Oct; 258(5083):803-5. PubMed ID: 1439788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidence for a novel racemization process of an asparaginyl residue in mouse lysozyme under physiological conditions.
    Ueno K; Ueda T; Sakai K; Abe Y; Hamasaki N; Okamoto M; Imoto T
    Cell Mol Life Sci; 2005 Jan; 62(2):199-205. PubMed ID: 15666091
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Determination of beta-isomerized aspartic acid as the corresponding alcohol.
    Carter DA; McFadden PN
    J Protein Chem; 1994 Jan; 13(1):97-106. PubMed ID: 8011077
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemical pathways of peptide degradation. III. Effect of primary sequence on the pathways of deamidation of asparaginyl residues in hexapeptides.
    Patel K; Borchardt RT
    Pharm Res; 1990 Aug; 7(8):787-93. PubMed ID: 2235875
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deamidation via cyclic imide in asparaginyl peptides.
    Capasso S; Mazzarella L; Sica F; Zagari A
    Pept Res; 1989; 2(2):195-200. PubMed ID: 2520758
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical pathways of peptide degradation. II. Kinetics of deamidation of an asparaginyl residue in a model hexapeptide.
    Patel K; Borchardt RT
    Pharm Res; 1990 Jul; 7(7):703-11. PubMed ID: 2395797
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure-dependent nonenzymatic deamidation of glutaminyl and asparaginyl pentapeptides.
    Robinson NE; Robinson ZW; Robinson BR; Robinson AL; Robinson JA; Robinson ML; Robinson AB
    J Pept Res; 2004 May; 63(5):426-36. PubMed ID: 15140160
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spontaneous cross-linking of proteins at aspartate and asparagine residues is mediated via a succinimide intermediate.
    Friedrich MG; Wang Z; Schey KL; Truscott RJW
    Biochem J; 2018 Oct; 475(20):3189-3200. PubMed ID: 30181147
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthetic peptide substrates for the erythrocyte protein carboxyl methyltransferase. Detection of a new site of methylation at isomerized L-aspartyl residues.
    Murray ED; Clarke S
    J Biol Chem; 1984 Sep; 259(17):10722-32. PubMed ID: 6469980
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetics of the competitive reactions of isomerization and peptide bond cleavage at l-α- and d-β-aspartyl residues in an αA-crystallin fragment.
    Aki K; Okamura E
    J Pept Sci; 2017 Jan; 23(1):28-37. PubMed ID: 27905156
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.