These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 2703484)

  • 41. Kinetics of the competitive reactions of isomerization and peptide bond cleavage at l-α- and d-β-aspartyl residues in an αA-crystallin fragment.
    Aki K; Okamura E
    J Pept Sci; 2017 Jan; 23(1):28-37. PubMed ID: 27905156
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Deamidation of asparagine residues: direct hydrolysis versus succinimide-mediated deamidation mechanisms.
    Catak S; Monard G; Aviyente V; Ruiz-López MF
    J Phys Chem A; 2009 Feb; 113(6):1111-20. PubMed ID: 19152321
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reactivity toward deamidation of asparagine residues in beta-turn structures.
    Xie M; Aubé J; Borchardt RT; Morton M; Topp EM; Vander Velde D; Schowen RL
    J Pept Res; 2000 Sep; 56(3):165-71. PubMed ID: 11007273
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Deamidation of the asparaginyl-glycyl sequence.
    Meinwald YC; Stimson ER; Scheraga HA
    Int J Pept Protein Res; 1986 Jul; 28(1):79-84. PubMed ID: 3759344
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Determination of rate constants for β-linkage isomerization of three specific aspartyl residues in recombinant human αA-crystallin protein by reversed-phase HPLC.
    Sadakane Y; Fujii N; Nakagomi K
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Nov; 879(29):3240-6. PubMed ID: 21470922
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Infrared analysis of peptide succinimide derivatives.
    Pistorius AM; Groenen PJ; De Grip WJ
    Int J Pept Protein Res; 1993 Dec; 42(6):570-7. PubMed ID: 8307688
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Racemization of an asparagine residue during peptide deamidation.
    Li B; Borchardt RT; Topp EM; VanderVelde D; Schowen RL
    J Am Chem Soc; 2003 Sep; 125(38):11486-7. PubMed ID: 13129337
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effects of a histidine residue on the C-terminal side of an asparaginyl residue on the rate of deamidation using model pentapeptides.
    Goolcharran C; Stauffer LL; Cleland JL; Borchardt RT
    J Pharm Sci; 2000 Jun; 89(6):818-25. PubMed ID: 10824141
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mammalian brain and erythrocyte carboxyl methyltransferases are similar enzymes that recognize both D-aspartyl and L-isoaspartyl residues in structurally altered protein substrates.
    O'Connor CM; Aswad DW; Clarke S
    Proc Natl Acad Sci U S A; 1984 Dec; 81(24):7757-61. PubMed ID: 6595658
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chemical pathways of peptide degradation. VI. Effect of the primary sequence on the pathways of degradation of aspartyl residues in model hexapeptides.
    Oliyai C; Borchardt RT
    Pharm Res; 1994 May; 11(5):751-8. PubMed ID: 8058648
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Calcium affects the spontaneous degradation of aspartyl/asparaginyl residues in calmodulin.
    Ota IM; Clarke S
    Biochemistry; 1989 May; 28(9):4020-7. PubMed ID: 2502176
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparison of the activation energy barrier for succinimide formation from α- and β-aspartic acid residues obtained from density functional theory calculations.
    Nakayoshi T; Kato K; Fukuyoshi S; Takahashi O; Kurimoto E; Oda A
    Biochim Biophys Acta Proteins Proteom; 2018 Jul; 1866(7):759-766. PubMed ID: 29305913
    [TBL] [Abstract][Full Text] [Related]  

  • 53. CTL recognition of an altered peptide associated with asparagine bond rearrangement. Implications for immunity and vaccine design.
    Chen W; Ede NJ; Jackson DC; McCluskey J; Purcell AW
    J Immunol; 1996 Aug; 157(3):1000-5. PubMed ID: 8757603
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The influence of protein structure on the products emerging from succinimide hydrolysis.
    Athmer L; Kindrachuk J; Georges F; Napper S
    J Biol Chem; 2002 Aug; 277(34):30502-7. PubMed ID: 12068021
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Racemization of the Succinimide Intermediate Formed in Proteins and Peptides: A Computational Study of the Mechanism Catalyzed by Dihydrogen Phosphate Ion.
    Takahashi O; Kirikoshi R; Manabe N
    Int J Mol Sci; 2016 Oct; 17(10):. PubMed ID: 27735868
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Formation of a cyclic imide in aspartyl or asparaginyl glycyl peptides induced by heating in the dry state.
    Luo SQ; Liao CX; McClelland JF; Graves DJ
    Int J Pept Protein Res; 1987 Jun; 29(6):728-33. PubMed ID: 3623803
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mass spectral and hydrolytic determination of amino acid sequences in synaptosomal peptides from calf brain.
    Marnela KM; Lähdesmäki P
    Neurochem Res; 1983 Jul; 8(7):933-41. PubMed ID: 6621778
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of amino acid sequence, buffers, and ionic strength on the rate and mechanism of deamidation of asparagine residues in small peptides.
    Tyler-Cross R; Schirch V
    J Biol Chem; 1991 Nov; 266(33):22549-56. PubMed ID: 1939272
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Isolation and characterization of a succinimide variant of methionyl human growth hormone.
    Teshima G; Stults JT; Ling V; Canova-Davis E
    J Biol Chem; 1991 Jul; 266(21):13544-7. PubMed ID: 1856190
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Proteinase enzyme system of lactic streptococci. 3. Substrate specificity of Streptococcus lactis intracellular proteinase.
    Cowman RA; Yoshimura S; Swaisgood HE
    J Bacteriol; 1968 Jan; 95(1):181-7. PubMed ID: 5636816
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.