These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 27035290)

  • 1. Creating a Superposition of Unknown Quantum States.
    Oszmaniec M; Grudka A; Horodecki M; Wójcik A
    Phys Rev Lett; 2016 Mar; 116(11):110403. PubMed ID: 27035290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resource Theory of Superposition.
    Theurer T; Killoran N; Egloff D; Plenio MB
    Phys Rev Lett; 2017 Dec; 119(23):230401. PubMed ID: 29286690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generating superposition of up-to three photons for continuous variable quantum information processing.
    Yukawa M; Miyata K; Mizuta T; Yonezawa H; Marek P; Filip R; Furusawa A
    Opt Express; 2013 Mar; 21(5):5529-35. PubMed ID: 23482124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creation of superposition of arbitrary states encoded in two high-Q cavities.
    Liu T; Zhang Y; Guo BQ; Yu CS; Zhang WN
    Opt Express; 2019 Sep; 27(19):27168-27182. PubMed ID: 31674583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vortex phase qubit: generating arbitrary, counterrotating, coherent superpositions in Bose-Einstein condensates via optical angular momentum beams.
    Kapale KT; Dowling JP
    Phys Rev Lett; 2005 Oct; 95(17):173601. PubMed ID: 16383828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Projective measurement onto arbitrary superposition of weak coherent state bases.
    Izumi S; Takeoka M; Wakui K; Fujiwara M; Ema K; Sasaki M
    Sci Rep; 2018 Feb; 8(1):2999. PubMed ID: 29445101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast creation of large Schrödinger cat states of an atom.
    Johnson KG; Wong-Campos JD; Neyenhuis B; Mizrahi J; Monroe C
    Nat Commun; 2017 Sep; 8(1):697. PubMed ID: 28951588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. "Photonic" Cat States from Strongly Interacting Matter Waves.
    Fischer UR; Kang MK
    Phys Rev Lett; 2015 Dec; 115(26):260404. PubMed ID: 26764977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slowing Quantum Decoherence by Squeezing in Phase Space.
    Le Jeannic H; Cavaillès A; Huang K; Filip R; Laurat J
    Phys Rev Lett; 2018 Feb; 120(7):073603. PubMed ID: 29542961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Entanglement and Superposition Are Equivalent Concepts in Any Physical Theory.
    Aubrun G; Lami L; Palazuelos C; Plávala M
    Phys Rev Lett; 2022 Apr; 128(16):160402. PubMed ID: 35522482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum Experiments and Graphs: Multiparty States as Coherent Superpositions of Perfect Matchings.
    Krenn M; Gu X; Zeilinger A
    Phys Rev Lett; 2017 Dec; 119(24):240403. PubMed ID: 29286732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum superposition at the half-metre scale.
    Kovachy T; Asenbaum P; Overstreet C; Donnelly CA; Dickerson SM; Sugarbaker A; Hogan JM; Kasevich MA
    Nature; 2015 Dec; 528(7583):530-3. PubMed ID: 26701053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decoherence of quantum superpositions through coupling to engineered reservoirs.
    Myatt CJ; King BE; Turchette QA; Sackett CA; Kielpinski D; Itano WM; Monroe C; Wineland DJ
    Nature; 2000 Jan; 403(6767):269-73. PubMed ID: 10659838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlocal quantum macroscopic superposition in a high-thermal low-purity state.
    Brezinski ME; Liu B
    Phys Rev A; 2008 Dec; 78(6):. PubMed ID: 24204102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transfer of arbitrary quantum emitter states to near-field photon superpositions in nanocavities.
    Thijssen AC; Cryan MJ; Rarity JG; Oulton R
    Opt Express; 2012 Sep; 20(20):22412-28. PubMed ID: 23037390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equivalence principle and quantum mechanics: quantum simulation with entangled photons.
    Longhi S
    Opt Lett; 2018 Jan; 43(2):226-229. PubMed ID: 29328244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deterministically encoding quantum information using 100-photon Schrödinger cat states.
    Vlastakis B; Kirchmair G; Leghtas Z; Nigg SE; Frunzio L; Girvin SM; Mirrahimi M; Devoret MH; Schoelkopf RJ
    Science; 2013 Nov; 342(6158):607-10. PubMed ID: 24072821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Creation of a six-atom 'Schrödinger cat' state.
    Leibfried D; Knill E; Seidelin S; Britton J; Blakestad RB; Chiaverini J; Hume DB; Itano WM; Jost JD; Langer C; Ozeri R; Reichle R; Wineland DJ
    Nature; 2005 Dec; 438(7068):639-42. PubMed ID: 16319885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum-optical catalysis: generating nonclassical states of light by means of linear optics.
    Lvovsky AI; Mlynek J
    Phys Rev Lett; 2002 Jun; 88(25 Pt 1):250401. PubMed ID: 12097076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of a superposition of odd photon number states for quantum information networks.
    Neergaard-Nielsen JS; Nielsen BM; Hettich C; Mølmer K; Polzik ES
    Phys Rev Lett; 2006 Aug; 97(8):083604. PubMed ID: 17026305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.