These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 27035307)
21. X-ray scattering measurements of strong ion-ion correlations in shock-compressed aluminum. Ma T; Döppner T; Falcone RW; Fletcher L; Fortmann C; Gericke DO; Landen OL; Lee HJ; Pak A; Vorberger J; Wünsch K; Glenzer SH Phys Rev Lett; 2013 Feb; 110(6):065001. PubMed ID: 23432260 [TBL] [Abstract][Full Text] [Related]
22. Thomson scattering on inhomogeneous targets. Thiele R; Sperling P; Chen M; Bornath T; Fäustlin RR; Fortmann C; Glenzer SH; Kraeft WD; Pukhov A; Toleikis S; Tschentscher T; Redmer R Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056404. PubMed ID: 21230599 [TBL] [Abstract][Full Text] [Related]
23. The relevance of electronic perturbations in the warm dense electron gas. Moldabekov Z; Dornheim T; Böhme M; Vorberger J; Cangi A J Chem Phys; 2021 Sep; 155(12):124116. PubMed ID: 34598570 [TBL] [Abstract][Full Text] [Related]
24. Models of the elastic x-ray scattering feature for warm dense aluminum. Starrett CE; Saumon D Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):033101. PubMed ID: 26465569 [TBL] [Abstract][Full Text] [Related]
25. Mixed stochastic-deterministic time-dependent density functional theory: application to stopping power of warm dense carbon. White AJ; Collins LA; Nichols K; Hu SX J Phys Condens Matter; 2022 Feb; 34(17):. PubMed ID: 35081511 [TBL] [Abstract][Full Text] [Related]
27. Thomson scattering from a three-component plasma. Johnson WR; Nilsen J Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023107. PubMed ID: 25353586 [TBL] [Abstract][Full Text] [Related]
28. Dynamic electron-ion collisions and nuclear quantum effects in quantum simulation of warm dense matter. Kang D; Dai J J Phys Condens Matter; 2018 Feb; 30(7):073002. PubMed ID: 29186001 [TBL] [Abstract][Full Text] [Related]
29. X-ray Thomson-scattering measurements of density and temperature in shock-compressed beryllium. Lee HJ; Neumayer P; Castor J; Döppner T; Falcone RW; Fortmann C; Hammel BA; Kritcher AL; Landen OL; Lee RW; Meyerhofer DD; Munro DH; Redmer R; Regan SP; Weber S; Glenzer SH Phys Rev Lett; 2009 Mar; 102(11):115001. PubMed ID: 19392206 [TBL] [Abstract][Full Text] [Related]
30. Unified description of linear screening in dense plasmas. Stanton LG; Murillo MS Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033104. PubMed ID: 25871221 [TBL] [Abstract][Full Text] [Related]
31. Measurements of ionic structure in shock compressed lithium hydride from ultrafast x-ray Thomson scattering. Kritcher AL; Neumayer P; Brown CR; Davis P; Döppner T; Falcone RW; Gericke DO; Gregori G; Holst B; Landen OL; Lee HJ; Morse EC; Pelka A; Redmer R; Roth M; Vorberger J; Wünsch K; Glenzer SH Phys Rev Lett; 2009 Dec; 103(24):245004. PubMed ID: 20366206 [TBL] [Abstract][Full Text] [Related]
32. Quantifying the partial ionization effect of gold in the transition region between condensed matter and warm dense matter. Li Z; Wang X; Hou Y; Yu Y; Li G; Hao L; Li X; Geng H; Dai C; Wu Q; Mao HK; Hu J Proc Natl Acad Sci U S A; 2023 May; 120(21):e2300066120. PubMed ID: 37186821 [TBL] [Abstract][Full Text] [Related]
33. Electron-ion and ion-ion potentials for modeling warm dense matter: Applications to laser-heated or shock-compressed Al and Si. Dharma-wardana MW Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036407. PubMed ID: 23031034 [TBL] [Abstract][Full Text] [Related]
34. Unraveling the intrinsic atomic physics behind x-ray absorption line shifts in warm dense silicon plasmas. Karasiev VV; Hu SX Phys Rev E; 2021 Mar; 103(3-1):033202. PubMed ID: 33862735 [TBL] [Abstract][Full Text] [Related]
35. Comment on "Isochoric, isobaric, and ultrafast conductivities of aluminum, lithium, and carbon in the warm dense matter regime". Witte BBL; Röpke G; Neumayer P; French M; Sperling P; Recoules V; Glenzer SH; Redmer R Phys Rev E; 2019 Apr; 99(4-2):047201. PubMed ID: 31108609 [TBL] [Abstract][Full Text] [Related]
36. Compton scatter profiles for warm dense matter. Sahoo S; Gribakin GF; Shabbir Naz G; Kohanoff J; Riley D Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046402. PubMed ID: 18517740 [TBL] [Abstract][Full Text] [Related]
37. Ab initio simulations for the ion-ion structure factor of warm dense aluminum. Rüter HR; Redmer R Phys Rev Lett; 2014 Apr; 112(14):145007. PubMed ID: 24765982 [TBL] [Abstract][Full Text] [Related]
38. Isochoric, isobaric, and ultrafast conductivities of aluminum, lithium, and carbon in the warm dense matter regime. Dharma-Wardana MWC; Klug DD; Harbour L; Lewis LJ Phys Rev E; 2017 Nov; 96(5-1):053206. PubMed ID: 29347759 [TBL] [Abstract][Full Text] [Related]
39. Nonideal mixing effects in warm dense matter studied with first-principles computer simulations. Militzer B; González-Cataldo F; Zhang S; Whitley HD; Swift DC; Millot M J Chem Phys; 2020 Nov; 153(18):184101. PubMed ID: 33187447 [TBL] [Abstract][Full Text] [Related]
40. Effective Static Approximation: A Fast and Reliable Tool for Warm-Dense Matter Theory. Dornheim T; Cangi A; Ramakrishna K; Böhme M; Tanaka S; Vorberger J Phys Rev Lett; 2020 Dec; 125(23):235001. PubMed ID: 33337174 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]