These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 27035514)
1. A constriction resistance model of conjugated polymer based piezoresistive sensors for electronic skin applications. Khalili N; Naguib HE; Kwon RH Soft Matter; 2016 May; 12(18):4180-9. PubMed ID: 27035514 [TBL] [Abstract][Full Text] [Related]
2. An interlocked flexible piezoresistive sensor with 3D micropyramidal structures for electronic skin applications. Khalili N; Shen X; Naguib HE Soft Matter; 2018 Sep; 14(33):6912-6920. PubMed ID: 30095849 [TBL] [Abstract][Full Text] [Related]
3. Wireless Rehabilitation Training Sensor Arrays Made with Hot Screen-Imprinted Conductive Hydrogels with a Low Percolation Threshold. Yao B; Ye Z; Lou X; Yan Q; Han Z; Dong Y; Qu S; Wang Z ACS Appl Mater Interfaces; 2022 Mar; 14(10):12734-12747. PubMed ID: 35230075 [TBL] [Abstract][Full Text] [Related]
4. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Pan L; Chortos A; Yu G; Wang Y; Isaacson S; Allen R; Shi Y; Dauskardt R; Bao Z Nat Commun; 2014; 5():3002. PubMed ID: 24389734 [TBL] [Abstract][Full Text] [Related]
5. Breathable and Large Curved Area Perceptible Flexible Piezoresistive Sensors Fabricated with Conductive Nanofiber Assemblies. Zhong W; Jiang H; Jia K; Ding X; Yadav A; Ke Y; Li M; Chen Y; Wang D ACS Appl Mater Interfaces; 2020 Aug; 12(33):37764-37773. PubMed ID: 32814398 [TBL] [Abstract][Full Text] [Related]
6. Recent Advances in Flexible and Wearable Pressure Sensors Based on Piezoresistive 3D Monolithic Conductive Sponges. Ding Y; Xu T; Onyilagha O; Fong H; Zhu Z ACS Appl Mater Interfaces; 2019 Feb; 11(7):6685-6704. PubMed ID: 30689335 [TBL] [Abstract][Full Text] [Related]
7. Surface Engineering of a 3D Topological Network for Ultrasensitive Piezoresistive Pressure Sensors. Pan H; Xie G; Pang W; Wang S; Wang Y; Jiang Z; Du X; Tai H ACS Appl Mater Interfaces; 2020 Aug; 12(34):38805-38812. PubMed ID: 32805963 [TBL] [Abstract][Full Text] [Related]
8. A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range. Tian H; Shu Y; Wang XF; Mohammad MA; Bie Z; Xie QY; Li C; Mi WT; Yang Y; Ren TL Sci Rep; 2015 Feb; 5():8603. PubMed ID: 25721159 [TBL] [Abstract][Full Text] [Related]
9. Three-Dimensional Self-Healable Touch Sensing Artificial Skin Device. Park S; Shin BG; Jang S; Chung K ACS Appl Mater Interfaces; 2020 Jan; 12(3):3953-3960. PubMed ID: 31858779 [TBL] [Abstract][Full Text] [Related]
10. Ultrahigh-Sensitive Finlike Double-Sided E-Skin for Force Direction Detection. Zhao XF; Hang CZ; Wen XH; Liu MY; Zhang H; Yang F; Ma RG; Wang JC; Zhang DW; Lu HL ACS Appl Mater Interfaces; 2020 Mar; 12(12):14136-14144. PubMed ID: 32131586 [TBL] [Abstract][Full Text] [Related]
11. Three realizations and comparison of hardware for piezoresistive tactile sensors. Vidal-Verdú F; Oballe-Peinado Ó; Sánchez-Durán JA; Castellanos-Ramos J; Navas-González R Sensors (Basel); 2011; 11(3):3249-66. PubMed ID: 22163797 [TBL] [Abstract][Full Text] [Related]
12. Artificial skin through super-sensing method and electrical impedance data from conductive fabric with aid of deep learning. Duan X; Taurand S; Soleimani M Sci Rep; 2019 Jun; 9(1):8831. PubMed ID: 31222040 [TBL] [Abstract][Full Text] [Related]
13. A Hydrogel-Based Electronic Skin for Touch Detection Using Electrical Impedance Tomography. Zhang H; Kalra A; Lowe A; Yu Y; Anand G Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772611 [TBL] [Abstract][Full Text] [Related]
14. Bioinspired Electronics for Artificial Sensory Systems. Jung YH; Park B; Kim JU; Kim TI Adv Mater; 2019 Aug; 31(34):e1803637. PubMed ID: 30345558 [TBL] [Abstract][Full Text] [Related]
15. Static Tactile Sensing for a Robotic Electronic Skin via an Electromechanical Impedance-Based Approach. Liu C; Zhuang Y; Nasrollahi A; Lu L; Haider MF; Chang FK Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32429364 [TBL] [Abstract][Full Text] [Related]
16. Contact Piezoresistive Sensors Based on Electro-Polymerized Polypyrrole and a Regulated Conductive Pathway. Tian Y; He R; Xu WC; Li J; Wu J; Zhong W; Zhang K ACS Appl Mater Interfaces; 2023 Oct; 15(42):49583-49594. PubMed ID: 37823823 [TBL] [Abstract][Full Text] [Related]
17. Highly Sensitive Wearable Pressure Sensors Based on Three-Scale Nested Wrinkling Microstructures of Polypyrrole Films. Yang C; Li L; Zhao J; Wang J; Xie J; Cao Y; Xue M; Lu C ACS Appl Mater Interfaces; 2018 Aug; 10(30):25811-25818. PubMed ID: 29993231 [TBL] [Abstract][Full Text] [Related]
18. Tactile devices to sense touch on a par with a human finger. Maheshwari V; Saraf R Angew Chem Int Ed Engl; 2008; 47(41):7808-26. PubMed ID: 18816579 [TBL] [Abstract][Full Text] [Related]
19. Bimodal Tactile Sensor without Signal Fusion for User-Interactive Applications. Ma X; Wang C; Wei R; He J; Li J; Liu X; Huang F; Ge S; Tao J; Yuan Z; Chen P; Peng D; Pan C ACS Nano; 2022 Feb; 16(2):2789-2797. PubMed ID: 35060692 [TBL] [Abstract][Full Text] [Related]
20. Flexible Pressure Sensors Based on the Controlled Buckling of Doped Semiconducting Polymer Nanopillars. Tsuda T; Chae S; Al-Hussein M; Formanek P; Fery A ACS Appl Mater Interfaces; 2021 Aug; 13(31):37445-37454. PubMed ID: 34328731 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]