These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

435 related articles for article (PubMed ID: 27035636)

  • 1. Excessive Osteocytic Fgf23 Secretion Contributes to Pyrophosphate Accumulation and Mineralization Defect in Hyp Mice.
    Murali SK; Andrukhova O; Clinkenbeard EL; White KE; Erben RG
    PLoS Biol; 2016 Apr; 14(4):e1002427. PubMed ID: 27035636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct roles for intrinsic osteocyte abnormalities and systemic factors in regulation of FGF23 and bone mineralization in Hyp mice.
    Liu S; Tang W; Zhou J; Vierthaler L; Quarles LD
    Am J Physiol Endocrinol Metab; 2007 Dec; 293(6):E1636-44. PubMed ID: 17848631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone proteins PHEX and DMP1 regulate fibroblastic growth factor Fgf23 expression in osteocytes through a common pathway involving FGF receptor (FGFR) signaling.
    Martin A; Liu S; David V; Li H; Karydis A; Feng JQ; Quarles LD
    FASEB J; 2011 Aug; 25(8):2551-62. PubMed ID: 21507898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FGF23 Neutralizing Antibody Partially Improves Bone Mineralization Defect of HMWFGF2 Isoforms in Transgenic Female Mice.
    Xiao L; Homer-Bouthiette C; Hurley MM
    J Bone Miner Res; 2018 Jul; 33(7):1347-1361. PubMed ID: 29502359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteocyte-specific deletion of Fgfr1 suppresses FGF23.
    Xiao Z; Huang J; Cao L; Liang Y; Han X; Quarles LD
    PLoS One; 2014; 9(8):e104154. PubMed ID: 25089825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of the DMP1 C-terminal fragment stimulates FGF23 and exacerbates the hypophosphatemic rickets phenotype in Hyp mice.
    Martin A; David V; Li H; Dai B; Feng JQ; Quarles LD
    Mol Endocrinol; 2012 Nov; 26(11):1883-95. PubMed ID: 22930691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathogenic role of Fgf23 in Hyp mice.
    Liu S; Zhou J; Tang W; Jiang X; Rowe DW; Quarles LD
    Am J Physiol Endocrinol Metab; 2006 Jul; 291(1):E38-49. PubMed ID: 16449303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of bone-renal mineral and energy metabolism: the PHEX, FGF23, DMP1, MEPE ASARM pathway.
    Rowe PS
    Crit Rev Eukaryot Gene Expr; 2012; 22(1):61-86. PubMed ID: 22339660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dysregulated gene expression in the primary osteoblasts and osteocytes isolated from hypophosphatemic Hyp mice.
    Miyagawa K; Yamazaki M; Kawai M; Nishino J; Koshimizu T; Ohata Y; Tachikawa K; Mikuni-Takagaki Y; Kogo M; Ozono K; Michigami T
    PLoS One; 2014; 9(4):e93840. PubMed ID: 24710520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hexa-D-arginine treatment increases 7B2•PC2 activity in hyp-mouse osteoblasts and rescues the HYP phenotype.
    Yuan B; Feng JQ; Bowman S; Liu Y; Blank RD; Lindberg I; Drezner MK
    J Bone Miner Res; 2013 Jan; 28(1):56-72. PubMed ID: 22886699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conditional Deletion of Murine Fgf23: Interruption of the Normal Skeletal Responses to Phosphate Challenge and Rescue of Genetic Hypophosphatemia.
    Clinkenbeard EL; Cass TA; Ni P; Hum JM; Bellido T; Allen MR; White KE
    J Bone Miner Res; 2016 Jun; 31(6):1247-57. PubMed ID: 26792657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex intrinsic abnormalities in osteoblast lineage cells of X-linked hypophosphatemia: Analysis of human iPS cell models generated by CRISPR/Cas9-mediated gene ablation.
    Nakanishi T; Yamazaki M; Tachikawa K; Ueta A; Kawai M; Ozono K; Michigami T
    Bone; 2024 Apr; 181():117044. PubMed ID: 38331306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathogenic role of Fgf23 in Dmp1-null mice.
    Liu S; Zhou J; Tang W; Menard R; Feng JQ; Quarles LD
    Am J Physiol Endocrinol Metab; 2008 Aug; 295(2):E254-61. PubMed ID: 18559986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Augmented Fibroblast Growth Factor-23 Secretion in Bone Locally Contributes to Impaired Bone Mineralization in Chronic Kidney Disease in Mice.
    Andrukhova O; Schüler C; Bergow C; Petric A; Erben RG
    Front Endocrinol (Lausanne); 2018; 9():311. PubMed ID: 29942284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel regulators of Fgf23 expression and mineralization in Hyp bone.
    Liu S; Tang W; Fang J; Ren J; Li H; Xiao Z; Quarles LD
    Mol Endocrinol; 2009 Sep; 23(9):1505-18. PubMed ID: 19556340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aberrant Phex function in osteoblasts and osteocytes alone underlies murine X-linked hypophosphatemia.
    Yuan B; Takaiwa M; Clemens TL; Feng JQ; Kumar R; Rowe PS; Xie Y; Drezner MK
    J Clin Invest; 2008 Feb; 118(2):722-34. PubMed ID: 18172553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impaired 1,25 dihydroxyvitamin D3 action and hypophosphatemia underlie the altered lacuno-canalicular remodeling observed in the Hyp mouse model of XLH.
    Yuan Y; Jagga S; Martins JS; Rana R; Pajevic PD; Liu ES
    PLoS One; 2021; 16(5):e0252348. PubMed ID: 34043707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of calcimimetic R568 and calcitriol in mineral homeostasis in the Hyp mouse, a murine homolog of X-linked hypophosphatemia.
    Leifheit-Nestler M; Kucka J; Yoshizawa E; Behets G; D'Haese P; Bergen C; Meier M; Fischer DC; Haffner D
    Bone; 2017 Oct; 103():224-232. PubMed ID: 28728941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hormonal Regulation of Osteocyte Perilacunar and Canalicular Remodeling in the Hyp Mouse Model of X-Linked Hypophosphatemia.
    Tokarz D; Martins JS; Petit ET; Lin CP; Demay MB; Liu ES
    J Bone Miner Res; 2018 Mar; 33(3):499-509. PubMed ID: 29083055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A PAI-1 antagonist ameliorates hypophosphatemia in the Hyp vitamin D-resistant rickets model mouse.
    Qian C; Ito N; Tsuji K; Sato S; Kikuchi K; Yoshii T; Miyata T; Asou Y
    FEBS Open Bio; 2024 Feb; 14(2):290-299. PubMed ID: 38050660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.