These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 2703570)

  • 1. Production of volatile fatty acids in the rumen and cecum-colon of steers as affected by forage:concentrate and forage physical form.
    Siciliano-Jones J; Murphy MR
    J Dairy Sci; 1989 Feb; 72(2):485-92. PubMed ID: 2703570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of chitosans to modulate ruminal fermentation of a 50:50 forage-to-concentrate diet in sheep.
    Goiri I; Oregui LM; Garcia-Rodriguez A
    J Anim Sci; 2010 Feb; 88(2):749-55. PubMed ID: 19854994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of a proteolytic feed enzyme on intake, digestion, ruminal fermentation, and milk production.
    Eun JS; Beauchemin KA
    J Dairy Sci; 2005 Jun; 88(6):2140-53. PubMed ID: 15905444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altering physically effective fiber intake through forage proportion and particle length: chewing and ruminal pH.
    Yang WZ; Beauchemin KA
    J Dairy Sci; 2007 Jun; 90(6):2826-38. PubMed ID: 17517723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of particle size of alfalfa-based dairy cow diets on chewing activity, ruminal fermentation, and milk production.
    Beauchemin KA; Yang WZ; Rode LM
    J Dairy Sci; 2003 Feb; 86(2):630-43. PubMed ID: 12647969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of forage:concentrate ratio and forage type on apparent digestibility, ruminal fermentation, and microbial growth in goats.
    Cantalapiedra-Hijar G; Yáñez-Ruiz DR; Martín-García AI; Molina-Alcaide E
    J Anim Sci; 2009 Feb; 87(2):622-31. PubMed ID: 18952730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feeding lactose increases ruminal butyrate and plasma beta-hydroxybutyrate in lactating dairy cows.
    DeFrain JM; Hippen AR; Kalscheur KF; Schingoethe DJ
    J Dairy Sci; 2004 Aug; 87(8):2486-94. PubMed ID: 15328272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of supplemental chromium on concentrations of liver triglyceride, blood metabolites and rumen VFA profile in steers fed a moderately high fat diet.
    Besong S; Jackson JA; Trammell DS; Akay V
    J Dairy Sci; 2001 Jul; 84(7):1679-85. PubMed ID: 11467818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of molasses and monensin in alfalfa hay- or corn silage-based diets on rumen fermentation, total tract digestibility, and milk production by Holstein cows.
    Oelker ER; Reveneau C; Firkins JL
    J Dairy Sci; 2009 Jan; 92(1):270-85. PubMed ID: 19109286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of carbohydrate source on ruminal fermentation characteristics, performance, and microbial protein synthesis in dairy cows.
    Gozho GN; Mutsvangwa T
    J Dairy Sci; 2008 Jul; 91(7):2726-35. PubMed ID: 18565931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing nitrogen utilization in growing steers fed forage diets supplemented with dried citrus pulp.
    Kim SC; Adesogan AT; Arthington JD
    J Anim Sci; 2007 Oct; 85(10):2548-55. PubMed ID: 17526670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increasing physically effective fiber content of dairy cow diets through forage proportion versus forage chop length: chewing and ruminal pH.
    Yang WZ; Beauchemin KA
    J Dairy Sci; 2009 Apr; 92(4):1603-15. PubMed ID: 19307642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nutrient digestion in the large intestine as influenced by forage to concentrate ratio and forage physical form.
    Siciliano-Jones J; Murphy MR
    J Dairy Sci; 1989 Feb; 72(2):471-84. PubMed ID: 2703569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of forage particle size, forage source, and grain fermentability on performance and ruminal pH in midlactation cows.
    Krause KM; Combs DK
    J Dairy Sci; 2003 Apr; 86(4):1382-97. PubMed ID: 12741563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategies for increasing energy density of dry cow diets.
    Rabelo E; Bertics SJ; Mackovic J; Grummer RR
    J Dairy Sci; 2001 Oct; 84(10):2240-9. PubMed ID: 11699456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of feed processing and frequency of feeding on ruminal fermentation, milk production, and milk composition.
    Klusmeyer TH; Cameron MR; McCoy GC; Clark JH
    J Dairy Sci; 1990 Dec; 73(12):3538-43. PubMed ID: 2099374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of carbohydrate source and buffer on rumen fermentation characteristics, milk yield, and milk composition in early-lactation Holstein cows.
    Kennelly JJ; Robinson B; Khorasani GR
    J Dairy Sci; 1999 Nov; 82(11):2486-96. PubMed ID: 10575616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of increasing level of corn distillers dried grains with solubles on intake, digestion, and ruminal fermentation in steers fed seventy percent concentrate diets.
    Leupp JL; Lardy GP; Karges KK; Gibson ML; Caton JS
    J Anim Sci; 2009 Sep; 87(9):2906-12. PubMed ID: 19465500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rumen lipopolysaccharide and inflammation during grain adaptation and subacute ruminal acidosis in steers.
    Gozho GN; Krause DO; Plaizier JC
    J Dairy Sci; 2006 Nov; 89(11):4404-13. PubMed ID: 17033028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of tylosin on concentrations of Fusobacterium necrophorum and fermentation products in the rumen of cattle fed a high-concentrate diet.
    Nagaraja TG; Sun Y; Wallace N; Kemp KE; Parrott CJ
    Am J Vet Res; 1999 Sep; 60(9):1061-5. PubMed ID: 10490072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.