These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Discovery of nonlinear dynamical systems using a Runge-Kutta inspired dictionary-based sparse regression approach. Goyal P; Benner P Proc Math Phys Eng Sci; 2022 Jun; 478(2262):20210883. PubMed ID: 35756880 [TBL] [Abstract][Full Text] [Related]
4. Data-driven discovery of the governing equations of dynamical systems via moving horizon optimization. Lejarza F; Baldea M Sci Rep; 2022 Jul; 12(1):11836. PubMed ID: 35821394 [TBL] [Abstract][Full Text] [Related]
5. Data-driven discovery of coordinates and governing equations. Champion K; Lusch B; Kutz JN; Brunton SL Proc Natl Acad Sci U S A; 2019 Nov; 116(45):22445-22451. PubMed ID: 31636218 [TBL] [Abstract][Full Text] [Related]
6. Controlling nonlinear dynamical systems into arbitrary states using machine learning. Haluszczynski A; Räth C Sci Rep; 2021 Jun; 11(1):12991. PubMed ID: 34155228 [TBL] [Abstract][Full Text] [Related]
7. Model selection of chaotic systems from data with hidden variables using sparse data assimilation. Ribera H; Shirman S; Nguyen AV; Mangan NM Chaos; 2022 Jun; 32(6):063101. PubMed ID: 35778121 [TBL] [Abstract][Full Text] [Related]
8. Sparse model selection via integral terms. Schaeffer H; McCalla SG Phys Rev E; 2017 Aug; 96(2-1):023302. PubMed ID: 28950639 [TBL] [Abstract][Full Text] [Related]
9. Learning chaotic systems from noisy data via multi-step optimization and adaptive training. Zhang L; Tang S; He G Chaos; 2022 Dec; 32(12):123134. PubMed ID: 36587345 [TBL] [Abstract][Full Text] [Related]
10. Sparse identification of nonlinear dynamics for rapid model recovery. Quade M; Abel M; Nathan Kutz J; Brunton SL Chaos; 2018 Jun; 28(6):063116. PubMed ID: 29960401 [TBL] [Abstract][Full Text] [Related]
11. Identifying causality drivers and deriving governing equations of nonlinear complex systems. Ma H; Haluszczynski A; Prosperino D; Räth C Chaos; 2022 Oct; 32(10):103128. PubMed ID: 36319303 [TBL] [Abstract][Full Text] [Related]
12. WyNDA: A method to discover mathematical models of dynamical systems from data. Hasan A MethodsX; 2024 Jun; 12():102625. PubMed ID: 38425498 [TBL] [Abstract][Full Text] [Related]
13. Robust data-driven discovery of governing physical laws with error bars. Zhang S; Lin G Proc Math Phys Eng Sci; 2018 Sep; 474(2217):20180305. PubMed ID: 30333709 [TBL] [Abstract][Full Text] [Related]
14. Sparse identification of Lagrangian for nonlinear dynamical systems via proximal gradient method. Purnomo A; Hayashibe M Sci Rep; 2023 May; 13(1):7919. PubMed ID: 37193704 [TBL] [Abstract][Full Text] [Related]
15. Finding nonlinear system equations and complex network structures from data: A sparse optimization approach. Lai YC Chaos; 2021 Aug; 31(8):082101. PubMed ID: 34470223 [TBL] [Abstract][Full Text] [Related]
16. Modeling of dynamical systems through deep learning. Rajendra P; Brahmajirao V Biophys Rev; 2020 Nov; 12(6):1311-20. PubMed ID: 33222032 [TBL] [Abstract][Full Text] [Related]
18. An improved sparse identification of nonlinear dynamics with Akaike information criterion and group sparsity. Dong X; Bai YL; Lu Y; Fan M Nonlinear Dyn; 2023; 111(2):1485-1510. PubMed ID: 36246669 [TBL] [Abstract][Full Text] [Related]
19. SINDy-PI: a robust algorithm for parallel implicit sparse identification of nonlinear dynamics. Kaheman K; Kutz JN; Brunton SL Proc Math Phys Eng Sci; 2020 Oct; 476(2242):20200279. PubMed ID: 33214760 [TBL] [Abstract][Full Text] [Related]
20. Kernel learning for robust dynamic mode decomposition: linear and nonlinear disambiguation optimization. Baddoo PJ; Herrmann B; McKeon BJ; Brunton SL Proc Math Phys Eng Sci; 2022 Apr; 478(2260):20210830. PubMed ID: 35450026 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]