These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

432 related articles for article (PubMed ID: 27036106)

  • 1. Using biological networks to integrate, visualize and analyze genomics data.
    Charitou T; Bryan K; Lynn DJ
    Genet Sel Evol; 2016 Mar; 48():27. PubMed ID: 27036106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Breeding and Genetics Symposium: building single nucleotide polymorphism-derived gene regulatory networks: Towards functional genomewide association studies.
    Reverter A; Fortes MR
    J Anim Sci; 2013 Feb; 91(2):530-6. PubMed ID: 23097399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computational approach for identification of core modules from a co-expression network and GWAS data.
    Sabik OL; Ackert-Bicknell CL; Farber CR
    STAR Protoc; 2021 Sep; 2(3):100768. PubMed ID: 34467232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A genomewide functional network for the laboratory mouse.
    Guan Y; Myers CL; Lu R; Lemischka IR; Bult CJ; Troyanskaya OG
    PLoS Comput Biol; 2008 Sep; 4(9):e1000165. PubMed ID: 18818725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrative Analysis of Genetic, Genomic, and Phenotypic Data for Ethanol Behaviors: A Network-Based Pipeline for Identifying Mechanisms and Potential Drug Targets.
    Bogenpohl JW; Mignogna KM; Smith ML; Miles MF
    Methods Mol Biol; 2017; 1488():531-549. PubMed ID: 27933543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MOVE: a multi-level ontology-based visualization and exploration framework for genomic networks.
    Bosman DW; Blom EJ; Ogao PJ; Kuipers OP; Roerdink JB
    In Silico Biol; 2007; 7(1):35-59. PubMed ID: 17688427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Systemic Analysis of Transcriptomic and Epigenomic Data To Reveal Regulation Patterns for Complex Disease.
    Xu C; Zhang JG; Lin D; Zhang L; Shen H; Deng HW
    G3 (Bethesda); 2017 Jul; 7(7):2271-2279. PubMed ID: 28500050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GENEASE: real time bioinformatics tool for multi-omics and disease ontology exploration, analysis and visualization.
    Ghandikota S; Hershey GKK; Mersha TB
    Bioinformatics; 2018 Sep; 34(18):3160-3168. PubMed ID: 29590301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomolecular Databases and Subnetwork Identification Approaches of Interest to Big Data Community: An Expert Review.
    Al-Harazi O; El Allali A; Colak D
    OMICS; 2019 Mar; 23(3):138-151. PubMed ID: 30883301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide inferring gene-phenotype relationship by walking on the heterogeneous network.
    Li Y; Patra JC
    Bioinformatics; 2010 May; 26(9):1219-24. PubMed ID: 20215462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current bioinformatics tools in genomic biomedical research (Review).
    Teufel A; Krupp M; Weinmann A; Galle PR
    Int J Mol Med; 2006 Jun; 17(6):967-73. PubMed ID: 16685403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrative analysis of human omics data using biomolecular networks.
    Robinson JL; Nielsen J
    Mol Biosyst; 2016 Oct; 12(10):2953-64. PubMed ID: 27510223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cancer omics: from regulatory networks to clinical outcomes.
    Tang B; Hsu PY; Huang TH; Jin VX
    Cancer Lett; 2013 Nov; 340(2):277-83. PubMed ID: 23201140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of higher order functional networks from genomic data.
    Kanehisa M
    Pharmacogenomics; 2001 Nov; 2(4):373-85. PubMed ID: 11722287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inference of dynamic networks using time-course data.
    Kim Y; Han S; Choi S; Hwang D
    Brief Bioinform; 2014 Mar; 15(2):212-28. PubMed ID: 23698724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of gene regulatory networks: from network reconstruction to evolution.
    Thompson D; Regev A; Roy S
    Annu Rev Cell Dev Biol; 2015; 31():399-428. PubMed ID: 26355593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. miRNA-miRNA crosstalk: from genomics to phenomics.
    Xu J; Shao T; Ding N; Li Y; Li X
    Brief Bioinform; 2017 Nov; 18(6):1002-1011. PubMed ID: 27551063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems.
    Shu L; Zhao Y; Kurt Z; Byars SG; Tukiainen T; Kettunen J; Orozco LD; Pellegrini M; Lusis AJ; Ripatti S; Zhang B; Inouye M; Mäkinen VP; Yang X
    BMC Genomics; 2016 Nov; 17(1):874. PubMed ID: 27814671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional genomics and proteomics of the cellular osmotic stress response in 'non-model' organisms.
    Kültz D; Fiol D; Valkova N; Gomez-Jimenez S; Chan SY; Lee J
    J Exp Biol; 2007 May; 210(Pt 9):1593-601. PubMed ID: 17449824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data.
    Wang E; Zaman N; Mcgee S; Milanese JS; Masoudi-Nejad A; O'Connor-McCourt M
    Semin Cancer Biol; 2015 Feb; 30():4-12. PubMed ID: 24747696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.