These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 27036244)
41. Elastodynamic Green's function retrieval through single-sided Marchenko inverse scattering. da Costa Filho CA; Ravasi M; Curtis A; Meles GA Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063201. PubMed ID: 25615212 [TBL] [Abstract][Full Text] [Related]
42. On the transient solutions of three acoustic wave equations: van Wijngaarden's equation, Stokes' equation and the time-dependent diffusion equation. Buckingham MJ J Acoust Soc Am; 2008 Oct; 124(4):1909-20. PubMed ID: 19062830 [TBL] [Abstract][Full Text] [Related]
43. Analytic solution for N-electrode actuated piezoelectric disk with application to piezoelectric micromachined ultrasonic transducers. Smyth K; Bathurst S; Sammoura F; Kim SG IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Aug; 60(8):1756-67. PubMed ID: 25004545 [TBL] [Abstract][Full Text] [Related]
44. Two parabolic equations for propagation in layered poro-elastic media. Metzler AM; Siegmann WL; Collins MD; Collis JM J Acoust Soc Am; 2013 Jul; 134(1):246-56. PubMed ID: 23862802 [TBL] [Abstract][Full Text] [Related]
45. Three-dimensional Cartesian parabolic equation model with higher-order cross-terms using operator splitting, rational filtering, and split-step Padé algorithm. Lee K; Seong W; Na Y J Acoust Soc Am; 2019 Sep; 146(3):2041. PubMed ID: 31590535 [TBL] [Abstract][Full Text] [Related]
46. A computer algorithm for spatio-temporal patterns in interactive neuron populations. Ahn SM Comput Programs Biomed; 1975 Aug; 4(4):226-9. PubMed ID: 1175370 [TBL] [Abstract][Full Text] [Related]
47. Weak nonlinear propagation of sound in a finite exponential horn. Béquin P; Morfey CL J Acoust Soc Am; 2001 Jun; 109(6):2649-59. PubMed ID: 11425107 [TBL] [Abstract][Full Text] [Related]
48. Unified Green's function retrieval by cross-correlation; connection with energy principles. Snieder R; Wapenaar K; Wegler U Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036103. PubMed ID: 17500755 [TBL] [Abstract][Full Text] [Related]
49. Distributed point source modeling of the scattering of elastic waves by a circular cavity in an anisotropic half-space. Fooladi S; Kundu T Ultrasonics; 2019 Apr; 94():264-280. PubMed ID: 30274854 [TBL] [Abstract][Full Text] [Related]
50. Calculations of band diagrams and low frequency dispersion relations of 2D periodic dielectric scatterers using broadband Green's function with low wavenumber extraction (BBGFL). Tsang L; Tan S Opt Express; 2016 Jan; 24(2):945-65. PubMed ID: 26832478 [TBL] [Abstract][Full Text] [Related]
51. A quasianalytical time domain solution for scattering from a homogeneous sphere. Li J; Dault D; Shanker B J Acoust Soc Am; 2014 Apr; 135(4):1676-85. PubMed ID: 25234967 [TBL] [Abstract][Full Text] [Related]
52. Generalization of the rotated parabolic equation to variable slopes. Outing DA; Siegmann WL; Collins MD; Westwood EK J Acoust Soc Am; 2006 Dec; 120(6):3534-8. PubMed ID: 17225384 [TBL] [Abstract][Full Text] [Related]
53. Green's functions for geophysics: a review. Pan E Rep Prog Phys; 2019 Oct; 82(10):106801. PubMed ID: 30974427 [TBL] [Abstract][Full Text] [Related]
54. Functional difference equations and eigenfunctions of a Schrödinger operator with Lyalinov MA Proc Math Phys Eng Sci; 2020 Sep; 476(2241):20200179. PubMed ID: 33071574 [TBL] [Abstract][Full Text] [Related]
55. Wave-front sensing by use of a Green's function solution to the intensity transport equation: comment. Campbell C J Opt Soc Am A Opt Image Sci Vis; 2007 Aug; 24(8):2480-1; discussion 2482-4. PubMed ID: 17621353 [TBL] [Abstract][Full Text] [Related]
57. Ray-trace modeling of acoustic Green's function based on the semiclassical (eikonal) approximation. Prislan R; Veble G; Svenšek D J Acoust Soc Am; 2016 Oct; 140(4):2695. PubMed ID: 27794279 [TBL] [Abstract][Full Text] [Related]
58. An exact point source starting field for the Fourier parabolic equation in outdoor sound propagation. Gilbert KE; Di X J Acoust Soc Am; 2007 May; 121(5 Pt1):EL203-10. PubMed ID: 17550204 [TBL] [Abstract][Full Text] [Related]