These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 27036245)

  • 21. Acoustic radiation force exerted on a small spheroidal rigid particle by a beam of arbitrary wavefront: Examples of traveling and standing plane waves.
    Silva GT; Drinkwater BW
    J Acoust Soc Am; 2018 Nov; 144(5):EL453. PubMed ID: 30522303
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acoustic streaming produced by a cylindrical bubble undergoing volume and translational oscillations in a microfluidic channel.
    Doinikov AA; Combriat T; Thibault P; Marmottant P
    Phys Rev E; 2016 Sep; 94(3-1):033109. PubMed ID: 27739843
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Outer Acoustic Streaming Flow Driven by Asymmetric Acoustic Resonances.
    Lei J; Zheng G; Yao Z; Huang Z
    Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056230
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Off-axial acoustic radiation force of repulsor and tractor bessel beams on a sphere.
    Silva GT; Lopes JH; Mitri FG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jun; 60(6):1207-12. PubMed ID: 25004483
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrasonic manipulation of particles and cells. Ultrasonic separation of cells.
    Coakley WT; Whitworth G; Grundy MA; Gould RK; Allman R
    Bioseparation; 1994 Apr; 4(2):73-83. PubMed ID: 7765041
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acoustic streaming induced by two orthogonal ultrasound standing waves in a microfluidic channel.
    Doinikov AA; Thibault P; Marmottant P
    Ultrasonics; 2018 Jul; 87():7-19. PubMed ID: 29428563
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stirring and mixing of liquids using acoustic radiation force.
    Sarvazyan A; Ostrovsky L
    J Acoust Soc Am; 2009 Jun; 125(6):3548-54. PubMed ID: 19507936
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Powerful Acoustogeometric Streaming from Dynamic Geometric Nonlinearity.
    Zhang N; Horesh A; Manor O; Friend J
    Phys Rev Lett; 2021 Apr; 126(16):164502. PubMed ID: 33961464
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Forces acting on a small particle in an acoustical field in a thermoviscous fluid.
    Karlsen JT; Bruus H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):043010. PubMed ID: 26565335
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Trapping of a mie sphere by acoustic pulses: effects of pulse length.
    Kang ST; Yeh CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jul; 60(7):1487-97. PubMed ID: 25004516
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Revised model for the radiation force exerted by standing surface acoustic waves on a rigid cylinder.
    Liang S; Chaohui W
    Phys Rev E; 2018 Mar; 97(3-1):033103. PubMed ID: 29776072
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Theoretical and numerical calculations for the time-averaged acoustic force and torque acting on a rigid cylinder of arbitrary size in a low viscosity fluid.
    Wang J; Dual J
    J Acoust Soc Am; 2011 Jun; 129(6):3490-501. PubMed ID: 21682376
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controlling acoustic streaming in an ultrasonic heptagonal tweezers with application to cell manipulation.
    Bernassau AL; Glynne-Jones P; Gesellchen F; Riehle M; Hill M; Cumming DR
    Ultrasonics; 2014 Jan; 54(1):268-74. PubMed ID: 23725599
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acoustic radiation force and torque on an absorbing compressible particle in an inviscid fluid.
    Silva GT
    J Acoust Soc Am; 2014 Nov; 136(5):2405-13. PubMed ID: 25373943
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acoustic radiation force analysis using finite difference time domain method.
    Grinenko A; Wilcox PD; Courtney CR; Drinkwater BW
    J Acoust Soc Am; 2012 May; 131(5):3664-70. PubMed ID: 22559343
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields.
    Collins DJ; Ma Z; Ai Y
    Anal Chem; 2016 May; 88(10):5513-22. PubMed ID: 27102956
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bulk-driven acoustic streaming at resonance in closed microcavities.
    Bach JS; Bruus H
    Phys Rev E; 2019 Aug; 100(2-1):023104. PubMed ID: 31574609
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computing the acoustic radiation force exerted on a sphere using the translational addition theorem.
    Silva GT; Baggio AL; Lopes JH; Mitri FG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Mar; 62(3):576-83. PubMed ID: 25768823
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Compressibility effects on steady streaming from a noncompact rigid sphere.
    Gopinath A; Trinh EH
    J Acoust Soc Am; 2000 Oct; 108(4):1514-20. PubMed ID: 11051478
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acoustic radiation force control: Pulsating spherical carriers.
    Rajabi M; Mojahed A
    Ultrasonics; 2018 Feb; 83():146-156. PubMed ID: 28622936
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.