These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 27036272)

  • 1. Experimental quantification of the true efficiency of carbon nanotube thin-film thermophones.
    Bouman TM; Barnard AR; Asgarisabet M
    J Acoust Soc Am; 2016 Mar; 139(3):1353-63. PubMed ID: 27036272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbonized Electrospun Nanofiber Sheets for Thermophones.
    Aliev AE; Perananthan S; Ferraris JP
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31192-31201. PubMed ID: 27776207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternative nanostructures for thermophones.
    Aliev AE; Mayo NK; Jung de Andrade M; Robles RO; Fang S; Baughman RH; Zhang M; Chen Y; Lee JA; Kim SJ
    ACS Nano; 2015 May; 9(5):4743-56. PubMed ID: 25748853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and Characterization of a Thermophone Based on Laser-Scribed Graphene Intercalated with Multiwalled Carbon Nanotubes.
    Rabbani M; Syed AW; Khalid S; Mohammad MA
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of measured acoustic power results gained by using three different methods on an ultrasonic low-frequency device.
    Petosić A; Svilar D; Ivancević B
    Ultrason Sonochem; 2011 Mar; 18(2):567-76. PubMed ID: 20850368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermoacoustic transduction in individual suspended carbon nanotubes.
    Mason BJ; Chang SW; Chen J; Cronin SB; Bushmaker AW
    ACS Nano; 2015 May; 9(5):5372-6. PubMed ID: 25961803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal management of thermoacoustic sound projectors using a free-standing carbon nanotube aerogel sheet as a heat source.
    Aliev AE; Mayo NK; Baughman RH; Avirovik D; Priya S; Zarnetske MR; Blottman JB
    Nanotechnology; 2014 Oct; 25(40):405704. PubMed ID: 25213658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility of a high-powered carbon nanotube thin-film loudspeaker.
    Barnard AR; Jenkins DM; Brungart TA; McDevitt TM; Kline BL
    J Acoust Soc Am; 2013 Sep; 134(3):EL276-81. PubMed ID: 23968060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Underwater sound generation using carbon nanotube projectors.
    Aliev AE; Lima MD; Fang S; Baughman RH
    Nano Lett; 2010 Jul; 10(7):2374-80. PubMed ID: 20507157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increasing the efficiency of thermoacoustic carbon nanotube sound projectors.
    Aliev AE; Gartstein YN; Baughman RH
    Nanotechnology; 2013 Jun; 24(23):235501. PubMed ID: 23669056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermoacoustic sound projector: exceeding the fundamental efficiency of carbon nanotubes.
    Aliev AE; Codoluto D; Baughman RH; Ovalle-Robles R; Inoue K; Romanov SA; Nasibulin AG; Kumar P; Priya S; Mayo NK; Blottman JB
    Nanotechnology; 2018 Aug; 29(32):325704. PubMed ID: 29763412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wavefront velocity oscillations of carbon-nanotube-guided thermopower waves: nanoscale alternating current sources.
    Abrahamson JT; Choi W; Schonenbach NS; Park J; Han JH; Walsh MP; Kalantar-Zadeh K; Strano MS
    ACS Nano; 2011 Jan; 5(1):367-75. PubMed ID: 21182252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near field acoustic holography measurements of carbon nanotube thin film speakers.
    Asgarisabet M; Barnard AR; Bouman TM
    J Acoust Soc Am; 2016 Dec; 140(6):4237. PubMed ID: 28040031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of thermodynamic properties of a thermo-acoustic emitter on the efficiency of thermal airborne ultrasound generation.
    Daschewski M; Kreutzbruck M; Prager J
    Ultrasonics; 2015 Dec; 63():16-22. PubMed ID: 26101177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research on Frequency Doubling Effect of Thermoacoustic Speaker Based on Graphene Film.
    Deng L; He X; He S; Ren Q; Zhao J; Wang D
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fundamental efficiency of nanothermophones: modeling and experiments.
    Vesterinen V; Niskanen AO; Hassel J; Helistö P
    Nano Lett; 2010 Dec; 10(12):5020-4. PubMed ID: 21038919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Film characteristics pertinent to coherent optical data processing systems.
    Thomas CE
    Appl Opt; 1972 Aug; 11(8):1756-65. PubMed ID: 20119231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sound production and spectral hearing sensitivity in the Hawaiian sergeant damselfish, Abudefduf abdominalis.
    Maruska KP; Boyle KS; Dewan LR; Tricas TC
    J Exp Biol; 2007 Nov; 210(Pt 22):3990-4004. PubMed ID: 17981867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods for measuring acoustic power of an ultrasonic neurosurgical device.
    Petosić A; Ivancević B; Svilar D; Stimac T; Paladino J; Oresković D; Jurjević I; Klarica M
    Coll Antropol; 2011 Jan; 35 Suppl 1():107-13. PubMed ID: 21648319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene earphones: entertainment for both humans and animals.
    Tian H; Li C; Mohammad MA; Cui YL; Mi WT; Yang Y; Xie D; Ren TL
    ACS Nano; 2014 Jun; 8(6):5883-90. PubMed ID: 24766102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.