BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 27036574)

  • 1. Physical modeling of microwave ablation zone clinical margin variance.
    Deshazer G; Merck D; Hagmann M; Dupuy DE; Prakash P
    Med Phys; 2016 Apr; 43(4):1764. PubMed ID: 27036574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity of microwave ablation models to tissue biophysical properties: A first step toward probabilistic modeling and treatment planning.
    Sebek J; Albin N; Bortel R; Natarajan B; Prakash P
    Med Phys; 2016 May; 43(5):2649. PubMed ID: 27147374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational modeling of 915 MHz microwave ablation: Comparative assessment of temperature-dependent tissue dielectric models.
    Deshazer G; Hagmann M; Merck D; Sebek J; Moore KB; Prakash P
    Med Phys; 2017 Sep; 44(9):4859-4868. PubMed ID: 28543540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental measurement of microwave ablation heating pattern and comparison to computer simulations.
    Deshazer G; Prakash P; Merck D; Haemmerich D
    Int J Hyperthermia; 2017 Feb; 33(1):74-82. PubMed ID: 27431040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influences of blood flow parameters on temperature distribution during liver tumor microwave ablation.
    Wang J; Wu S; Wu Z; Gao H; Huang S
    Front Biosci (Landmark Ed); 2021 Sep; 26(9):504-516. PubMed ID: 34590463
    [No Abstract]   [Full Text] [Related]  

  • 6. Antenna design and tissue parameters considerations for an improved modelling of microwave ablation in the liver.
    Karampatzakis A; Kühn S; Tsanidis G; Neufeld E; Samaras T; Kuster N
    Phys Med Biol; 2013 May; 58(10):3191-206. PubMed ID: 23603829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave ablation of lung tumors: A probabilistic approach for simulation-based treatment planning.
    Sebek J; Taeprasartsit P; Wibowo H; Beard WL; Bortel R; Prakash P
    Med Phys; 2021 Jul; 48(7):3991-4003. PubMed ID: 33964020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Periportal fields cause stronger cooling effects than veins in hepatic microwave ablation: an in vivo porcine study.
    Poch FG; Geyer B; Neizert CA; Gemeinhardt O; Niehues SM; Vahldiek JL; Frericks B; Lehmann KS
    Acta Radiol; 2021 Mar; 62(3):322-328. PubMed ID: 32493033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical modeling of microwave liver ablation with a variable-porosity medium approach.
    Tucci C; Trujillo M; Berjano E; Iasiello M; Andreozzi A; Vanoli GP
    Comput Methods Programs Biomed; 2022 Feb; 214():106569. PubMed ID: 34906785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the Heat Sink Effect After Transarterial Embolization When Performed in Combination with Thermal Ablation of the Liver in a Rabbit Model.
    Puza CJ; Wang Q; Kim CY
    Cardiovasc Intervent Radiol; 2018 Nov; 41(11):1773-1778. PubMed ID: 30039505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Pilot Study of the Impact of Microwave Ablation on the Dielectric Properties of Breast Tissue.
    Neira LM; Mays RO; Sawicki JF; Schulman A; Harter J; Wilke LG; Behdad N; Van Veen BD; Hagness SC
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33036268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A coaxial slot antenna with frequency of 433 MHz for microwave ablation therapies: design, simulation, and experimental research.
    Jiang Y; Zhao J; Li W; Yang Y; Liu J; Qian Z
    Med Biol Eng Comput; 2017 Nov; 55(11):2027-2036. PubMed ID: 28462497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental Evaluation of the Heat Sink Effect in Hepatic Microwave Ablation.
    Ringe KI; Lutat C; Rieder C; Schenk A; Wacker F; Raatschen HJ
    PLoS One; 2015; 10(7):e0134301. PubMed ID: 26222431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of microwave ablation of liver malignancy with enabled constant spatial energy control to achieve a predictable spherical ablation zone.
    Vogl TJ; Basten LM; Nour-Eldin NA; Kaltenbach B; Bodelle B; Wichmann JL; Ackermann H; Naguib NNN
    Int J Hyperthermia; 2018 Jun; 34(4):492-500. PubMed ID: 28774210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave Ablation (MWA): Basics, Technique and Results in Primary and Metastatic Liver Neoplasms - Review Article.
    Vogl TJ; Nour-Eldin NA; Hammerstingl RM; Panahi B; Naguib NNN
    Rofo; 2017 Nov; 189(11):1055-1066. PubMed ID: 28834968
    [No Abstract]   [Full Text] [Related]  

  • 16. A Directional Interstitial Antenna for Microwave Tissue Ablation: Theoretical and Experimental Investigation.
    McWilliams BT; Schnell EE; Curto S; Fahrbach TM; Prakash P
    IEEE Trans Biomed Eng; 2015 Sep; 62(9):2144-50. PubMed ID: 25794385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cooling Effects Occur in Hepatic Microwave Ablation At Low Vascular Flow Rates and in Close Proximity to Liver Vessels - Ex Vivo.
    Poch FGM; Eminger KJ; Neizert CA; Geyer B; Rieder C; Ballhausen H; Niehues SM; Vahldiek JL; Lehmann KS
    Surg Innov; 2022 Dec; 29(6):705-715. PubMed ID: 35227134
    [No Abstract]   [Full Text] [Related]  

  • 18. An optimal sliding choke antenna for hepatic microwave ablation.
    Prakash P; Converse MC; Webster JG; Mahvi DM
    IEEE Trans Biomed Eng; 2009 Oct; 56(10):2470-6. PubMed ID: 19535312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Percutaneous microwave ablation of hepatic tumors: is there an impact of cirrhotic liver parenchyma upon the volume and short-term assessment of the ablation zone?
    Tsochatzis A; Charalampopoulos G; Tzelves L; Velonakis G; Kelekis A; Kelekis N; Filippiadis DK
    Br J Radiol; 2023 Dec; 96(1152):20230383. PubMed ID: 37750857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental assessment of microwave ablation computational modeling with MR thermometry.
    Faridi P; Keselman P; Fallahi H; Prakash P
    Med Phys; 2020 Sep; 47(9):3777-3788. PubMed ID: 32506550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.