BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

644 related articles for article (PubMed ID: 27036582)

  • 1. Accelerated fast iterative shrinkage thresholding algorithms for sparsity-regularized cone-beam CT image reconstruction.
    Xu Q; Yang D; Tan J; Sawatzky A; Anastasio MA
    Med Phys; 2016 Apr; 43(4):1849. PubMed ID: 27036582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast compressed sensing-based CBCT reconstruction using Barzilai-Borwein formulation for application to on-line IGRT.
    Park JC; Song B; Kim JS; Park SH; Kim HK; Liu Z; Suh TS; Song WY
    Med Phys; 2012 Mar; 39(3):1207-17. PubMed ID: 22380351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shading correction assisted iterative cone-beam CT reconstruction.
    Yang C; Wu P; Gong S; Wang J; Lyu Q; Tang X; Niu T
    Phys Med Biol; 2017 Oct; 62(22):8495-8520. PubMed ID: 29077573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation and Clinical Application of a Commercially Available Iterative Reconstruction Algorithm for CBCT-Based IGRT.
    Mao W; Liu C; Gardner SJ; Siddiqui F; Snyder KC; Kumarasiri A; Zhao B; Kim J; Wen NW; Movsas B; Chetty IJ
    Technol Cancer Res Treat; 2019 Jan; 18():1533033818823054. PubMed ID: 30803367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An ordered-subsets proximal preconditioned gradient algorithm for edge-preserving PET image reconstruction.
    Mehranian A; Rahmim A; Ay MR; Kotasidis F; Zaidi H
    Med Phys; 2013 May; 40(5):052503. PubMed ID: 23635293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards the clinical implementation of iterative low-dose cone-beam CT reconstruction in image-guided radiation therapy: cone/ring artifact correction and multiple GPU implementation.
    Yan H; Wang X; Shi F; Bai T; Folkerts M; Cervino L; Jiang SB; Jia X
    Med Phys; 2014 Nov; 41(11):111912. PubMed ID: 25370645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerated statistical reconstruction for C-arm cone-beam CT using Nesterov's method.
    Wang AS; Stayman JW; Otake Y; Vogt S; Kleinszig G; Siewerdsen JH
    Med Phys; 2015 May; 42(5):2699-708. PubMed ID: 25979068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating iterative algebraic algorithms in terms of convergence and image quality for cone beam CT.
    Qiu W; Pengpan T; Smith ND; Soleimani M
    Comput Methods Programs Biomed; 2013 Mar; 109(3):313-22. PubMed ID: 23164522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous deblurring and iterative reconstruction of CBCT for image guided brain radiosurgery.
    Hashemi S; Song WY; Sahgal A; Lee Y; Huynh C; Grouza V; Nordström H; Eriksson M; Dorenlot A; Régis JM; Mainprize JG; Ruschin M
    Phys Med Biol; 2017 Apr; 62(7):2521-2541. PubMed ID: 28248652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GPU-based fast cone beam CT reconstruction from undersampled and noisy projection data via total variation.
    Jia X; Lou Y; Li R; Song WY; Jiang SB
    Med Phys; 2010 Apr; 37(4):1757-60. PubMed ID: 20443497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Fourier-based compressed sensing technique for accelerated CT image reconstruction using first-order methods.
    Choi K; Li R; Nam H; Xing L
    Phys Med Biol; 2014 Jun; 59(12):3097-119. PubMed ID: 24840019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fused analytical and iterative reconstruction (AIR) via modified proximal forward-backward splitting: a FDK-based iterative image reconstruction example for CBCT.
    Gao H
    Phys Med Biol; 2016 Oct; 61(19):7187-7204. PubMed ID: 27649259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-quality initial image-guided 4D CBCT reconstruction.
    Zhi S; Kachelrieß M; Mou X
    Med Phys; 2020 Jun; 47(5):2099-2115. PubMed ID: 32017128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerated barrier optimization compressed sensing (ABOCS) reconstruction for cone-beam CT: phantom studies.
    Niu T; Zhu L
    Med Phys; 2012 Jul; 39(7):4588-98. PubMed ID: 22830790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iterative image reconstruction algorithm analysis for optical CT radiochromic gel dosimetry.
    Collins S; Ogilvy A; Hare W; Hilts M; Jirasek A
    Biomed Phys Eng Express; 2024 Apr; 10(3):. PubMed ID: 38579691
    [No Abstract]   [Full Text] [Related]  

  • 16. Truncation effect reduction for fast iterative reconstruction in cone-beam CT.
    Aootaphao S; Thongvigitmanee SS; Puttawibul P; Thajchayapong P
    BMC Med Imaging; 2022 Sep; 22(1):160. PubMed ID: 36064374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Common-mask guided image reconstruction (c-MGIR) for enhanced 4D cone-beam computed tomography.
    Park JC; Zhang H; Chen Y; Fan Q; Li JG; Liu C; Lu B
    Phys Med Biol; 2015 Dec; 60(23):9157-83. PubMed ID: 26562284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A low-complexity 2-point step size gradient projection method with selective function evaluations for smoothed total variation based CBCT reconstructions.
    Song B; Park JC; Song WY
    Phys Med Biol; 2014 Nov; 59(21):6565-82. PubMed ID: 25320866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fast iteration approach to undersampled cone-beam CT reconstruction.
    Zhu Y; Liu Y; Zhang Q; Zhang C; Gao X
    J Xray Sci Technol; 2019; 27(1):111-129. PubMed ID: 30507602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variable step size methods for solving simultaneous algebraic reconstruction technique (SART)-type cbct reconstructions.
    Lee HC; Song B; Kim JS; Jung JJ; Li HH; Mutic S; Park JC
    Oncotarget; 2017 May; 8(20):33827-33835. PubMed ID: 28476047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.