These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 27037056)
1. Fabrication of porous gelatin-chitosan microcarriers and modeling of process parameters via the RSM method. Karimian S A M; Mashayekhan S; Baniasadi H Int J Biol Macromol; 2016 Jul; 88():288-95. PubMed ID: 27037056 [TBL] [Abstract][Full Text] [Related]
2. Modeling and optimization of gelatin-chitosan micro-carriers preparation for soft tissue engineering: Using Response Surface Methodology. Radaei P; Mashayekhan S; Vakilian S Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():545-553. PubMed ID: 28415497 [TBL] [Abstract][Full Text] [Related]
3. Preparation and characterization of gelatin-chitosan-nanoβ-TCP based scaffold for orthopaedic application. Maji K; Dasgupta S; Pramanik K; Bissoyi A Mater Sci Eng C Mater Biol Appl; 2018 May; 86():83-94. PubMed ID: 29525100 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and characterization of chitosan-alginate scaffolds for seeding human umbilical cord derived mesenchymal stem cells. Kumbhar SG; Pawar SH Biomed Mater Eng; 2016; 27(6):561-575. PubMed ID: 28234241 [TBL] [Abstract][Full Text] [Related]
5. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength. Maji K; Dasgupta S; Kundu B; Bissoyi A J Biomater Sci Polym Ed; 2015; 26(16):1190-209. PubMed ID: 26335156 [TBL] [Abstract][Full Text] [Related]
6. Design and fabrication of injectable microcarriers composed of acellular cartilage matrix and chitosan. Sivandzade F; Mashayekhan S J Biomater Sci Polym Ed; 2018 Apr; 29(6):683-700. PubMed ID: 29370745 [TBL] [Abstract][Full Text] [Related]
7. Optimization and evaluation of silk fibroin-chitosan freeze-dried porous scaffolds for cartilage tissue engineering application. Vishwanath V; Pramanik K; Biswas A J Biomater Sci Polym Ed; 2016; 27(7):657-74. PubMed ID: 26830046 [TBL] [Abstract][Full Text] [Related]
8. Modulation of in vitro attachment, proliferation and osteogenic differentiation of rat bone-marrow-derived stem cells using different molecular mass chitosans and their blends with gelatin. Ratanavaraporn J; Kanokpanont S; Tabata Y; Damrongsakkul S J Biomater Sci Polym Ed; 2010; 21(8-9):979-96. PubMed ID: 20507703 [TBL] [Abstract][Full Text] [Related]
9. Alginate/PEG based microcarriers with cleavable crosslinkage for expansion and non-invasive harvest of human umbilical cord blood mesenchymal stem cells. Li C; Qian Y; Zhao S; Yin Y; Li J Mater Sci Eng C Mater Biol Appl; 2016 Jul; 64():43-53. PubMed ID: 27127027 [TBL] [Abstract][Full Text] [Related]
10. Fabrication and characterization of conductive chitosan/gelatin-based scaffolds for nerve tissue engineering. Baniasadi H; Ramazani S A A; Mashayekhan S Int J Biol Macromol; 2015 Mar; 74():360-6. PubMed ID: 25553968 [TBL] [Abstract][Full Text] [Related]
11. Mesenchymal stem cells associated with porous chitosan-gelatin scaffold: a potential strategy for alveolar bone regeneration. Miranda SC; Silva GA; Mendes RM; Abreu FA; Caliari MV; Alves JB; Goes AM J Biomed Mater Res A; 2012 Oct; 100(10):2775-86. PubMed ID: 22623117 [TBL] [Abstract][Full Text] [Related]
12. Development of porous chitosan-gelatin/hydroxyapatite composite scaffolds for hard tissue-engineering applications. Isikli C; Hasirci V; Hasirci N J Tissue Eng Regen Med; 2012 Feb; 6(2):135-43. PubMed ID: 21351375 [TBL] [Abstract][Full Text] [Related]
13. Cell-loaded gelatin/chitosan scaffolds fabricated by salt-leaching/lyophilization for skin tissue engineering: in vitro and in vivo study. Pezeshki-Modaress M; Rajabi-Zeleti S; Zandi M; Mirzadeh H; Sodeifi N; Nekookar A; Aghdami N J Biomed Mater Res A; 2014 Nov; 102(11):3908-17. PubMed ID: 24323537 [TBL] [Abstract][Full Text] [Related]
14. Incorporation of PLGA nanoparticles into porous chitosan-gelatin scaffolds: influence on the physical properties and cell behavior. Nandagiri VK; Gentile P; Chiono V; Tonda-Turo C; Matsiko A; Ramtoola Z; Montevecchi FM; Ciardelli G J Mech Behav Biomed Mater; 2011 Oct; 4(7):1318-27. PubMed ID: 21783141 [TBL] [Abstract][Full Text] [Related]
15. Numerical Simulation of Mass Transfer and Three-Dimensional Fabrication of Tissue-Engineered Cartilages Based on Chitosan/Gelatin Hybrid Hydrogel Scaffold in a Rotating Bioreactor. Zhu Y; Song K; Jiang S; Chen J; Tang L; Li S; Fan J; Wang Y; Zhao J; Liu T Appl Biochem Biotechnol; 2017 Jan; 181(1):250-266. PubMed ID: 27526111 [TBL] [Abstract][Full Text] [Related]
16. Perfusion conditioning of hydroxyapatite-chitosan-gelatin scaffolds for bone tissue regeneration from human mesenchymal stem cells. Sellgren KL; Ma T J Tissue Eng Regen Med; 2012 Jan; 6(1):49-59. PubMed ID: 21308991 [TBL] [Abstract][Full Text] [Related]
17. Fabrication and characterization of chitosan/gelatin/nSiO2 composite scaffold for bone tissue engineering. Kavya KC; Jayakumar R; Nair S; Chennazhi KP Int J Biol Macromol; 2013 Aug; 59():255-63. PubMed ID: 23591473 [TBL] [Abstract][Full Text] [Related]
18. Preparation and characterization of chitosan porous microcarriers for hepatocyte culture. Wu XB; Peng CH; Huang F; Kuang J; Yu SL; Dong YD; Han BS Hepatobiliary Pancreat Dis Int; 2011 Oct; 10(5):509-15. PubMed ID: 21947725 [TBL] [Abstract][Full Text] [Related]
19. Electrospun chitosan-gelatin nanofiberous scaffold: fabrication and in vitro evaluation. Jafari J; Emami SH; Samadikuchaksaraei A; Bahar MA; Gorjipour F Biomed Mater Eng; 2011; 21(2):99-112. PubMed ID: 21654066 [TBL] [Abstract][Full Text] [Related]
20. Conductive hydrogel based on chitosan-aniline pentamer/gelatin/agarose significantly promoted motor neuron-like cells differentiation of human olfactory ecto-mesenchymal stem cells. Bagher Z; Atoufi Z; Alizadeh R; Farhadi M; Zarrintaj P; Moroni L; Setayeshmehr M; Komeili A; Kamrava SK Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():243-253. PubMed ID: 31029317 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]