These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 27037582)
1. Aragonite infill in overgrown conceptacles of coralline Lithothamnion spp. (Hapalidiaceae, Hapalidiales, Rhodophyta): new insights in biomineralization and phylomineralogy. Krayesky-Self S; Richards JL; Rahmatian M; Fredericq S J Phycol; 2016 Apr; 52(2):161-73. PubMed ID: 27037582 [TBL] [Abstract][Full Text] [Related]
2. Phylomineralogy of the coralline red algae: correlation of skeletal mineralogy with molecular phylogeny. Smith AM; Sutherland JE; Kregting L; Farr TJ; Winter DJ Phytochemistry; 2012 Sep; 81():97-108. PubMed ID: 22795764 [TBL] [Abstract][Full Text] [Related]
3. The role of chitin-rich skeletal organic matrix on the crystallization of calcium carbonate in the crustose coralline alga Leptophytum foecundum. Rahman MA; Halfar J; Adey WH; Nash M; Paulo C; Dittrich M Sci Rep; 2019 Aug; 9(1):11869. PubMed ID: 31417166 [TBL] [Abstract][Full Text] [Related]
4. Biomineralization of calcium carbonate in the cell wall of Lithothamnion crispatum (Hapalidiales, Rhodophyta): correlation between the organic matrix and the mineral phase. de Carvalho RT; Salgado LT; Amado Filho GM; Leal RN; Werckmann J; Rossi AL; Campos APC; Karez CS; Farina M J Phycol; 2017 Jun; 53(3):642-651. PubMed ID: 28258584 [TBL] [Abstract][Full Text] [Related]
5. Presence of skeletal banding in a reef-building tropical crustose coralline alga. Lewis B; Lough JM; Nash MC; Diaz-Pulido G PLoS One; 2017; 12(10):e0185124. PubMed ID: 28976988 [TBL] [Abstract][Full Text] [Related]
6. Impact of high CO2 on the geochemistry of the coralline algae Lithothamnion glaciale. Ragazzola F; Foster LC; Jones CJ; Scott TB; Fietzke J; Kilburn MR; Schmidt DN Sci Rep; 2016 Feb; 6():20572. PubMed ID: 26853562 [TBL] [Abstract][Full Text] [Related]
8. Multiple phases of mg-calcite in crustose coralline algae suggest caution for temperature proxy and ocean acidification assessment: lessons from the ultrastructure and biomineralization in Phymatolithon (Rhodophyta, Corallinales) Nash MC; Adey W J Phycol; 2017 Oct; 53(5):970-984. PubMed ID: 28671731 [TBL] [Abstract][Full Text] [Related]
9. Coralline algal calcification: A morphological and process-based understanding. Nash MC; Diaz-Pulido G; Harvey AS; Adey W PLoS One; 2019; 14(9):e0221396. PubMed ID: 31557180 [TBL] [Abstract][Full Text] [Related]
10. Global assessment of coralline algae mineralogy points to high vulnerability of Southwestern Atlantic reefs and rhodolith beds to ocean acidification. de Carvalho RT; Rocha GM; Karez CS; da Gama Bahia R; Pereira RC; Bastos AC; Salgado LT Sci Rep; 2022 Jun; 12(1):9589. PubMed ID: 35688967 [TBL] [Abstract][Full Text] [Related]
11. Major loss of coralline algal diversity in response to ocean acidification. Peña V; Harvey BP; Agostini S; Porzio L; Milazzo M; Horta P; Le Gall L; Hall-Spencer JM Glob Chang Biol; 2021 Oct; 27(19):4785-4798. PubMed ID: 34268846 [TBL] [Abstract][Full Text] [Related]
12. Sporosarcina pasteurii can form nanoscale calcium carbonate crystals on cell surface. Ghosh T; Bhaduri S; Montemagno C; Kumar A PLoS One; 2019; 14(1):e0210339. PubMed ID: 30699142 [TBL] [Abstract][Full Text] [Related]
13. Rapid multi-generational acclimation of coralline algal reproductive structures to ocean acidification. Moore B; Comeau S; Bekaert M; Cossais A; Purdy A; Larcombe E; Puerzer F; McCulloch MT; Cornwall CE Proc Biol Sci; 2021 May; 288(1950):20210130. PubMed ID: 33975470 [TBL] [Abstract][Full Text] [Related]
14. Interplay of microbial communities with mineral environments in coralline algae. Valdespino-Castillo PM; Bautista-García A; Favoretto F; Merino-Ibarra M; Alcántara-Hernández RJ; Pi-Puig T; Castillo FS; Espinosa-Matías S; Holman HY; Blanco-Jarvio A Sci Total Environ; 2021 Feb; 757():143877. PubMed ID: 33316514 [TBL] [Abstract][Full Text] [Related]
15. Discovery of the mineral brucite (magnesium hydroxide) in the tropical calcifying alga Polystrata dura (Peyssonneliales, Rhodophyta). Nash MC; Russell BD; Dixon KR; Liu M; Xu H J Phycol; 2015 Jun; 51(3):403-7. PubMed ID: 26986657 [TBL] [Abstract][Full Text] [Related]
16. Rhodoliths holobionts in a changing ocean: host-microbes interactions mediate coralline algae resilience under ocean acidification. Cavalcanti GS; Shukla P; Morris M; Ribeiro B; Foley M; Doane MP; Thompson CC; Edwards MS; Dinsdale EA; Thompson FL BMC Genomics; 2018 Sep; 19(1):701. PubMed ID: 30249182 [TBL] [Abstract][Full Text] [Related]
17. Phymatolithopsis gen. nov. (Hapalidiales, Corallinophycidae, Rhodophyta) based on molecular and morpho-anatomical evidence. Jeong SY; Diaz-Pulido G; Maneveldt GW; Gabrielson PW; Nelson WA; Won BY; Cho TO J Phycol; 2022 Feb; 58(1):161-178. PubMed ID: 34862980 [TBL] [Abstract][Full Text] [Related]
18. Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification. Kamenos NA; Burdett HL; Aloisio E; Findlay HS; Martin S; Longbone C; Dunn J; Widdicombe S; Calosi P Glob Chang Biol; 2013 Dec; 19(12):3621-8. PubMed ID: 23943376 [TBL] [Abstract][Full Text] [Related]
19. Unveiling privacy: advances in microtomography of coralline algae. Torrano-Silva BN; Ferreira SG; Oliveira MC Micron; 2015 May; 72():34-8. PubMed ID: 25777060 [TBL] [Abstract][Full Text] [Related]
20. Efficient coralline algal psbA mini barcoding and High Resolution Melt (HRM) analysis using a simple custom DNA preparation. Anglès d'Auriac MB; Le Gall L; Peña V; Hall-Spencer JM; Steneck RS; Fredriksen S; Gitmark J; Christie H; Husa V; Grefsrud ES; Rinde E Sci Rep; 2019 Jan; 9(1):578. PubMed ID: 30679622 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]