These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 27037589)

  • 1. Energy cost and putative benefits of cellular mechanisms modulating buoyancy in aflagellate marine phytoplankton.
    Lavoie M; Raven JA; Levasseur M
    J Phycol; 2016 Apr; 52(2):239-51. PubMed ID: 27037589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of temperature and elevated carbon dioxide on the production of dimethylsulfoniopropionate and glycine betaine by marine phytoplankton.
    Spielmeyer A; Pohnert G
    Mar Environ Res; 2012 Feb; 73():62-9. PubMed ID: 22130520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Do marine phytoplankton follow Bergmann's rule sensu lato?
    Sommer U; Peter KH; Genitsaris S; Moustaka-Gouni M
    Biol Rev Camb Philos Soc; 2017 May; 92(2):1011-1026. PubMed ID: 27028628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular partitioning of nanoparticulate versus dissolved metals in marine phytoplankton.
    Bielmyer-Fraser GK; Jarvis TA; Lenihan HS; Miller RJ
    Environ Sci Technol; 2014 Nov; 48(22):13443-50. PubMed ID: 25337629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disruption of vertical motility by shear triggers formation of thin phytoplankton layers.
    Durham WM; Kessler JO; Stocker R
    Science; 2009 Feb; 323(5917):1067-70. PubMed ID: 19229037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Weak organic ligands enhance zinc uptake in marine phytoplankton.
    Aristilde L; Xu Y; Morel FM
    Environ Sci Technol; 2012 May; 46(10):5438-45. PubMed ID: 22494184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ELEVATED CARBON DIOXIDE DIFFERENTIALLY ALTERS THE PHOTOPHYSIOLOGY OF THALASSIOSIRA PSEUDONANA (BACILLARIOPHYCEAE) AND EMILIANIA HUXLEYI (HAPTOPHYTA)(1).
    McCarthy A; Rogers SP; Duffy SJ; Campbell DA
    J Phycol; 2012 Jun; 48(3):635-46. PubMed ID: 27011079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microscale patches of nonmotile phytoplankton.
    Arrieta J; Barreira A; Tuval I
    Phys Rev Lett; 2015 Mar; 114(12):128102. PubMed ID: 25860773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell size dependence of additive versus synergetic effects of UV radiation and PAHs on oceanic phytoplankton.
    Echeveste P; Agustí S; Dachs J
    Environ Pollut; 2011 May; 159(5):1307-16. PubMed ID: 21330023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison by PAM fluorometry of photosynthetic activity of nine marine phytoplankton grown under identical conditions.
    Juneau P; Harrison PJ
    Photochem Photobiol; 2005; 81(3):649-53. PubMed ID: 15686444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cysteine Enhances Bioavailability of Copper to Marine Phytoplankton.
    Walsh MJ; Goodnow SD; Vezeau GE; Richter LV; Ahner BA
    Environ Sci Technol; 2015 Oct; 49(20):12145-52. PubMed ID: 26420592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mechanisms by which marine phytoplankton respond to their dynamic chemical environment.
    Palenik B
    Ann Rev Mar Sci; 2015; 7():325-40. PubMed ID: 25195866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sink or swim? Vertical movement and nutrient storage in phytoplankton.
    Grover JP
    J Theor Biol; 2017 Nov; 432():38-48. PubMed ID: 28818466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cadmium in three marine phytoplankton: accumulation, subcellular fate and thiol induction.
    Wang MJ; Wang WX
    Aquat Toxicol; 2009 Nov; 95(2):99-107. PubMed ID: 19748136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic energy budget modeling reveals the potential of future growth and calcification for the coccolithophore Emiliania huxleyi in an acidified ocean.
    Muller EB; Nisbet RM
    Glob Chang Biol; 2014 Jun; 20(6):2031-8. PubMed ID: 24526588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy cost of intracellular metal and metalloid detoxification in wild-type eukaryotic phytoplankton.
    Lavoie M; Raven JA; Jones OA; Qian H
    Metallomics; 2016 Oct; 8(10):1097-1109. PubMed ID: 27465106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple environmental controls on phytoplankton growth strategies determine adaptive responses of the N : P ratio.
    Daines SJ; Clark JR; Lenton TM
    Ecol Lett; 2014 Apr; 17(4):414-25. PubMed ID: 24418348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unimodal size scaling of phytoplankton growth and the size dependence of nutrient uptake and use.
    Marañón E; Cermeño P; López-Sandoval DC; Rodríguez-Ramos T; Sobrino C; Huete-Ortega M; Blanco JM; Rodríguez J
    Ecol Lett; 2013 Mar; 16(3):371-9. PubMed ID: 23279624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ECOLOGICAL AND EVOLUTIONARY IMPLICATIONS OF CARBON ALLOCATION IN MARINE PHYTOPLANKTON AS A FUNCTION OF NITROGEN AVAILABILITY: A FOURIER TRANSFORM INFRARED SPECTROSCOPY APPROACH(1).
    Palmucci M; Ratti S; Giordano M
    J Phycol; 2011 Apr; 47(2):313-23. PubMed ID: 27021863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web.
    Seymour JR; Simó R; Ahmed T; Stocker R
    Science; 2010 Jul; 329(5989):342-5. PubMed ID: 20647471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.