These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 27037613)

  • 1. An essential role of caffeoyl shikimate esterase in monolignol biosynthesis in Medicago truncatula.
    Ha CM; Escamilla-Trevino L; Yarce JC; Kim H; Ralph J; Chen F; Dixon RA
    Plant J; 2016 Jun; 86(5):363-75. PubMed ID: 27037613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silencing
    Saleme MLS; Cesarino I; Vargas L; Kim H; Vanholme R; Goeminne G; Van Acker R; Fonseca FCA; Pallidis A; Voorend W; Junior JN; Padmakshan D; Van Doorsselaere J; Ralph J; Boerjan W
    Plant Physiol; 2017 Nov; 175(3):1040-1057. PubMed ID: 28878037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic Analysis and Biochemical Characterization of the Caffeoyl Shikimate Esterase Gene Family in Poplar.
    Wang X; Chao N; Zhang A; Kang J; Jiang X; Gai Y
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional Characteristics of Caffeoyl Shikimate Esterase in
    Wang X; Chao N; Zhang M; Jiang X; Gai Y
    Int J Mol Sci; 2019 Dec; 20(23):. PubMed ID: 31810184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Caffeoyl shikimate esterase (CSE) is an enzyme in the lignin biosynthetic pathway in Arabidopsis.
    Vanholme R; Cesarino I; Rataj K; Xiao Y; Sundin L; Goeminne G; Kim H; Cross J; Morreel K; Araujo P; Welsh L; Haustraete J; McClellan C; Vanholme B; Ralph J; Simpson GG; Halpin C; Boerjan W
    Science; 2013 Sep; 341(6150):1103-6. PubMed ID: 23950498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early lignin pathway enzymes and routes to chlorogenic acid in switchgrass (Panicum virgatum L.).
    Escamilla-Treviño LL; Shen H; Hernandez T; Yin Y; Xu Y; Dixon RA
    Plant Mol Biol; 2014 Mar; 84(4-5):565-76. PubMed ID: 24190737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase for lignin modification in Brachypodium distachyon.
    Serrani-Yarce JC; Escamilla-Trevino L; Barros J; Gallego-Giraldo L; Pu Y; Ragauskas A; Dixon RA
    Biotechnol Biofuels; 2021 Feb; 14(1):50. PubMed ID: 33640016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered profile of floral volatiles and lignin content by down-regulation of Caffeoyl Shikimate Esterase in Petunia.
    Kim JY; Cho KH; Keene SA; Colquhoun TA
    BMC Plant Biol; 2023 Apr; 23(1):210. PubMed ID: 37085749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Redesigning Arabidopsis Lignins into Alkali-Soluble Lignins through the Expression of p-Coumaroyl-CoA:Monolignol Transferase PMT.
    Sibout R; Le Bris P; Legée F; Cézard L; Renault H; Lapierre C
    Plant Physiol; 2016 Mar; 170(3):1358-66. PubMed ID: 26826222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR-Knockout of
    Jang HA; Bae EK; Kim MH; Park SJ; Choi NY; Pyo SW; Lee C; Jeong HY; Lee H; Choi YI; Ko JH
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34575913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An NAC transcription factor orchestrates multiple features of cell wall development in Medicago truncatula.
    Zhao Q; Gallego-Giraldo L; Wang H; Zeng Y; Ding SY; Chen F; Dixon RA
    Plant J; 2010 Jul; 63(1):100-14. PubMed ID: 20408998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-Cas9 editing of CAFFEOYL SHIKIMATE ESTERASE 1 and 2 shows their importance and partial redundancy in lignification in Populus tremula × P. alba.
    de Vries L; Brouckaert M; Chanoca A; Kim H; Regner MR; Timokhin VI; Sun Y; De Meester B; Van Doorsselaere J; Goeminne G; Chiang VL; Wang JP; Ralph J; Morreel K; Vanholme R; Boerjan W
    Plant Biotechnol J; 2021 Nov; 19(11):2221-2234. PubMed ID: 34160888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of a bacterial 3-dehydroshikimate dehydratase (QsuB) reduces lignin and improves biomass saccharification efficiency in switchgrass (Panicum virgatum L.).
    Hao Z; Yogiswara S; Wei T; Benites VT; Sinha A; Wang G; Baidoo EEK; Ronald PC; Scheller HV; Loqué D; Eudes A
    BMC Plant Biol; 2021 Jan; 21(1):56. PubMed ID: 33478381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional characterization of cinnamyl alcohol dehydrogenase and caffeic acid O-methyltransferase in Brachypodium distachyon.
    Trabucco GM; Matos DA; Lee SJ; Saathoff AJ; Priest HD; Mockler TC; Sarath G; Hazen SP
    BMC Biotechnol; 2013 Jul; 13():61. PubMed ID: 23902793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silencing of 4-coumarate:coenzyme A ligase in switchgrass leads to reduced lignin content and improved fermentable sugar yields for biofuel production.
    Xu B; Escamilla-Treviño LL; Sathitsuksanoh N; Shen Z; Shen H; Zhang YH; Dixon RA; Zhao B
    New Phytol; 2011 Nov; 192(3):611-25. PubMed ID: 21790609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PbCSE1 promotes lignification during stone cell development in pear (Pyrus bretschneideri) fruit.
    Xu J; Tao X; Xie Z; Gong X; Qi K; Zhang S; Shiratake K; Tao S
    Sci Rep; 2021 May; 11(1):9450. PubMed ID: 33941813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative genomic analysis of the R2R3 MYB secondary cell wall regulators of Arabidopsis, poplar, rice, maize, and switchgrass.
    Zhao K; Bartley LE
    BMC Plant Biol; 2014 May; 14():135. PubMed ID: 24885077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining enhanced biomass density with reduced lignin level for improved forage quality.
    Gallego-Giraldo L; Shadle G; Shen H; Barros-Rios J; Fresquet Corrales S; Wang H; Dixon RA
    Plant Biotechnol J; 2016 Mar; 14(3):895-904. PubMed ID: 26190611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving total saccharification yield of Arabidopsis plants by vessel-specific complementation of caffeoyl shikimate esterase (cse) mutants.
    Vargas L; Cesarino I; Vanholme R; Voorend W; de Lyra Soriano Saleme M; Morreel K; Boerjan W
    Biotechnol Biofuels; 2016; 9():139. PubMed ID: 27390589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LACCASE5 is required for lignification of the Brachypodium distachyon Culm.
    Wang Y; Bouchabke-Coussa O; Lebris P; Antelme S; Soulhat C; Gineau E; Dalmais M; Bendahmane A; Morin H; Mouille G; Legée F; Cézard L; Lapierre C; Sibout R
    Plant Physiol; 2015 May; 168(1):192-204. PubMed ID: 25755252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.