These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 27037658)
1. Arsenic mobilization from sediments in microcosms under sulfate reduction. Sun J; Quicksall AN; Chillrud SN; Mailloux BJ; Bostick BC Chemosphere; 2016 Jun; 153():254-61. PubMed ID: 27037658 [TBL] [Abstract][Full Text] [Related]
2. Enhanced and stabilized arsenic retention in microcosms through the microbial oxidation of ferrous iron by nitrate. Sun J; Chillrud SN; Mailloux BJ; Stute M; Singh R; Dong H; Lepre CJ; Bostick BC Chemosphere; 2016 Feb; 144():1106-15. PubMed ID: 26454120 [TBL] [Abstract][Full Text] [Related]
3. Effect of oxalic acid treatment on sediment arsenic concentrations and lability under reducing conditions. Sun J; Bostick BC; Mailloux BJ; Ross JM; Chillrud SN J Hazard Mater; 2016 Jul; 311():125-33. PubMed ID: 26970042 [TBL] [Abstract][Full Text] [Related]
4. Sulfate enhances the dissimilatory arsenate-respiring prokaryotes-mediated mobilization, reduction and release of insoluble arsenic and iron from the arsenic-rich sediments into groundwater. Wang J; Zeng XC; Zhu X; Chen X; Zeng X; Mu Y; Yang Y; Wang Y J Hazard Mater; 2017 Oct; 339():409-417. PubMed ID: 28686931 [TBL] [Abstract][Full Text] [Related]
5. Effect of microbially mediated iron mineral transformation on temporal variation of arsenic in the Pleistocene aquifers of the central Yangtze River basin. Deng Y; Zheng T; Wang Y; Liu L; Jiang H; Ma T Sci Total Environ; 2018 Apr; 619-620():1247-1258. PubMed ID: 29734603 [TBL] [Abstract][Full Text] [Related]
7. Arsenic bioremediation by biogenic iron oxides and sulfides. Omoregie EO; Couture RM; Van Cappellen P; Corkhill CL; Charnock JM; Polya DA; Vaughan D; Vanbroekhoven K; Lloyd JR Appl Environ Microbiol; 2013 Jul; 79(14):4325-35. PubMed ID: 23666325 [TBL] [Abstract][Full Text] [Related]
8. Dissolution and final fate of arsenic associated with gypsum, calcite, and ferrihydrite: Influence of microbial reduction of As(V), sulfate, and Fe(III). Rios-Valenciana EE; Briones-Gallardo R; Chazaro-Ruiz LF; Lopez-Lozano NE; Sierra-Alvarez R; Celis LB Chemosphere; 2020 Jan; 239():124823. PubMed ID: 31726520 [TBL] [Abstract][Full Text] [Related]
9. Crossing redox boundaries--aquifer redox history and effects on iron mineralogy and arsenic availability. Banning A; Rüde TR; Dölling B J Hazard Mater; 2013 Nov; 262():905-14. PubMed ID: 23280400 [TBL] [Abstract][Full Text] [Related]
10. As release under the microbial sulfate reduction during redox oscillations in the upper Mekong delta aquifers, Vietnam: A mechanistic study. Phan VTH; Bernier-Latmani R; Tisserand D; Bardelli F; Le Pape P; Frutschi M; Gehin A; Couture RM; Charlet L Sci Total Environ; 2019 May; 663():718-730. PubMed ID: 30731417 [TBL] [Abstract][Full Text] [Related]
11. Occurrence of arsenic in core sediments and groundwater in the Chapai-Nawabganj District, northwestern Bangladesh. Selim Reza AH; Jean JS; Yang HJ; Lee MK; Woodall B; Liu CC; Lee JF; Luo SD Water Res; 2010 Mar; 44(6):2021-37. PubMed ID: 20053416 [TBL] [Abstract][Full Text] [Related]
12. Microbially mediated mobilization of arsenic from aquifer sediments under bacterial sulfate reduction. Gao J; Zheng T; Deng Y; Jiang H Sci Total Environ; 2021 May; 768():144709. PubMed ID: 33736355 [TBL] [Abstract][Full Text] [Related]
13. Effects of Fe-S-As coupled redox processes on arsenic mobilization in shallow aquifers of Datong Basin, northern China. Zhang J; Ma T; Yan Y; Xie X; Abass OK; Liu C; Zhao Z; Wang Z Environ Pollut; 2018 Jun; 237():28-38. PubMed ID: 29466772 [TBL] [Abstract][Full Text] [Related]
14. Iron and arsenic cycling in intertidal surface sediments during wetland remediation. Johnston SG; Keene AF; Burton ED; Bush RT; Sullivan LA Environ Sci Technol; 2011 Mar; 45(6):2179-85. PubMed ID: 21322553 [TBL] [Abstract][Full Text] [Related]
15. Changes in iron, sulfur, and arsenic speciation associated with bacterial sulfate reduction in ferrihydrite-rich systems. Saalfield SL; Bostick BC Environ Sci Technol; 2009 Dec; 43(23):8787-93. PubMed ID: 19943647 [TBL] [Abstract][Full Text] [Related]
16. In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental study. Xie X; Wang Y; Pi K; Liu C; Li J; Liu Y; Wang Z; Duan M Sci Total Environ; 2015 Sep; 527-528():38-46. PubMed ID: 25956146 [TBL] [Abstract][Full Text] [Related]
17. Role of nanoparticles in controlling arsenic mobilization from sediments near a realgar tailing. Dong G; Huang Y; Yu Q; Wang Y; Wang H; He N; Li Q Environ Sci Technol; 2014 Jul; 48(13):7469-76. PubMed ID: 24853472 [TBL] [Abstract][Full Text] [Related]
18. Biogeochemical cycling of arsenic in coastal salinized aquifers: Evidence from sulfur isotope study. Kao YH; Wang SW; Liu CW; Wang PL; Wang CH; Maji SK Sci Total Environ; 2011 Oct; 409(22):4818-30. PubMed ID: 21885091 [TBL] [Abstract][Full Text] [Related]
19. Evidence for microbial Fe(III) reduction in anoxic, mining-impacted lake sediments (Lake Coeur d'Alene, Idaho). Cummings DE; March AW; Bostick B; Spring S; Caccavo F; Fendorf S; Rosenzweig RF Appl Environ Microbiol; 2000 Jan; 66(1):154-62. PubMed ID: 10618217 [TBL] [Abstract][Full Text] [Related]
20. Mobilization of arsenic on nano-TiO Luo T; Ye L; Chan T; Jing C Environ Pollut; 2018 Mar; 234():762-768. PubMed ID: 29245150 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]