BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 27037770)

  • 1. Insights into reptile dermal contaminant exposure: Reptile skin permeability to pesticides.
    Weir SM; Talent LG; Anderson TA; Salice CJ
    Chemosphere; 2016 Jul; 154():17-22. PubMed ID: 27037770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling the relative importance of oral and dermal contaminant exposure in reptiles: insights from studies using the western fence lizard (Sceloporus occidentalis).
    Weir SM; Talent LG; Anderson TA; Salice CJ
    PLoS One; 2014; 9(6):e99666. PubMed ID: 24941063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ecological risk of anthropogenic pollutants to reptiles: Evaluating assumptions of sensitivity and exposure.
    Weir SM; Suski JG; Salice CJ
    Environ Pollut; 2010 Dec; 158(12):3596-606. PubMed ID: 20855139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving reptile ecological risk assessment: oral and dermal toxicity of pesticides to a common lizard species (Sceloporus occidentalis).
    Weir SM; Yu S; Talent LG; Maul JD; Anderson TA; Salice CJ
    Environ Toxicol Chem; 2015 Aug; 34(8):1778-86. PubMed ID: 25760295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validity of fish, birds and mammals as surrogates for amphibians and reptiles in pesticide toxicity assessment.
    Ortiz-Santaliestra ME; Maia JP; Egea-Serrano A; Lopes I
    Ecotoxicology; 2018 Sep; 27(7):819-833. PubMed ID: 29492806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating terrestrial amphibian pesticide body burden through dermal exposure.
    Van Meter RJ; Glinski DA; Hong T; Cyterski M; Henderson WM; Purucker ST
    Environ Pollut; 2014 Oct; 193():262-268. PubMed ID: 25063914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of predictive algorithms used for estimating potential postapplication, nondietary ingestion exposures to pesticides associated with children's hand-to-mouth behavior.
    Driver J; Ross J; Pandian M; Assaf N; Osimitz T; Holden L
    J Toxicol Environ Health A; 2013; 76(9):556-86. PubMed ID: 23751001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New experimental data on the human dermal absorption of Simazine and Carbendazim help to refine the assessment of human exposure.
    Bányiová K; Nečasová A; Kohoutek J; Justan I; Čupr P
    Chemosphere; 2016 Feb; 145():148-56. PubMed ID: 26688251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soil organic matter content effects on dermal pesticide bioconcentration in American toads (Bufo americanus).
    Van Meter RJ; Glinski DA; Henderson WM; Purucker ST
    Environ Toxicol Chem; 2016 Nov; 35(11):2734-2741. PubMed ID: 27028289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of dermal exposure to pesticide residues during re-entry.
    Belsey NA; Cordery SF; Bunge AL; Guy RH
    Environ Sci Technol; 2011 May; 45(10):4609-15. PubMed ID: 21510672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemomorphic analysis of malathion in skin layers of the rat: implications for the use of dermatopharmacokinetic tape stripping in exposure assessment to pesticides.
    Dary CC; Blancato JN; Saleh MA
    Regul Toxicol Pharmacol; 2001 Dec; 34(3):234-48. PubMed ID: 11754528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defense against dermal exposures is only skin deep: significantly increased penetration through slightly damaged skin.
    Nielsen JB; Nielsen F; Sørensen JA
    Arch Dermatol Res; 2007 Nov; 299(9):423-31. PubMed ID: 17882442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of dermal absorption using the exponential saturation model.
    Thongsinthusak T; Ross JH; Saiz SG; Krieger RI
    Regul Toxicol Pharmacol; 1999 Feb; 29(1):37-43. PubMed ID: 10051417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Malathion dermal permeability in relation to dermal load: Assessment by physiologically based pharmacokinetic modeling of in vivo human data.
    Bogen KT; Singhal A
    J Environ Sci Health B; 2017 Feb; 52(2):138-146. PubMed ID: 27820679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reassessment of the experimental skin permeability coefficients of polycyclic aromatic hydrocarbons and organophosphorus pesticides.
    Silva J; Marques-da-Silva D; Lagoa R
    Environ Toxicol Pharmacol; 2021 Aug; 86():103671. PubMed ID: 33979686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Percutaneous absorption and exposure assessment of pesticides.
    Ngo MA; O'Malley M; Maibach HI
    J Appl Toxicol; 2010 Mar; 30(2):91-114. PubMed ID: 20033883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxicity of pesticides in lizards.
    Freitas LM; Paranaíba J; Peréz A; Machado M; Lima FC
    Hum Exp Toxicol; 2020 May; 39(5):596-604. PubMed ID: 31957493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Levels of chlorinated, brominated, and perfluorinated contaminants in birds of prey spanning multiple trophic levels.
    Yordy JE; Rossman S; Ostrom PH; Reiner JL; Bargnesi K; Hughes S; Elliot JD
    J Wildl Dis; 2013 Apr; 49(2):347-54. PubMed ID: 23568910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benzene percutaneous absorption: dermal exposure relative to other benzene sources.
    Wester RC; Maibach HI
    Int J Occup Environ Health; 2000; 6(2):122-6. PubMed ID: 10828141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pesticides reduce tropical amphibian and reptile diversity in agricultural landscapes in Indonesia.
    Wanger TC; Brook BW; Evans T; Tscharntke T
    PeerJ; 2023; 11():e15046. PubMed ID: 36967985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.