These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 27037832)

  • 1. Assembly of the draft genome of buckwheat and its applications in identifying agronomically useful genes.
    Yasui Y; Hirakawa H; Ueno M; Matsui K; Katsube-Tanaka T; Yang SJ; Aii J; Sato S; Mori M
    DNA Res; 2016 Jun; 23(3):215-24. PubMed ID: 27037832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide transcriptomic and phylogenetic analyses reveal distinct aluminum-tolerance mechanisms in the aluminum-accumulating species buckwheat (Fagopyrum tataricum).
    Zhu H; Wang H; Zhu Y; Zou J; Zhao FJ; Huang CF
    BMC Plant Biol; 2015 Jan; 15():16. PubMed ID: 25603892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted amplicon sequencing + next-generation sequencing-based bulked segregant analysis identified genetic loci associated with preharvest sprouting tolerance in common buckwheat (Fagopyrum esculentum).
    Takeshima R; Ogiso-Tanaka E; Yasui Y; Matsui K
    BMC Plant Biol; 2021 Jan; 21(1):18. PubMed ID: 33407135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Tartary Buckwheat Genome Provides Insights into Rutin Biosynthesis and Abiotic Stress Tolerance.
    Zhang L; Li X; Ma B; Gao Q; Du H; Han Y; Li Y; Cao Y; Qi M; Zhu Y; Lu H; Ma M; Liu L; Zhou J; Nan C; Qin Y; Wang J; Cui L; Liu H; Liang C; Qiao Z
    Mol Plant; 2017 Sep; 10(9):1224-1237. PubMed ID: 28866080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic and genomic research for the development of an efficient breeding system in heterostylous self-incompatible common buckwheat (Fagopyrum esculentum).
    Matsui K; Yasui Y
    Theor Appl Genet; 2020 May; 133(5):1641-1653. PubMed ID: 32152716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global transcriptome analysis of Al-induced genes in an Al-accumulating species, common buckwheat (Fagopyrum esculentum Moench).
    Yokosho K; Yamaji N; Ma JF
    Plant Cell Physiol; 2014 Dec; 55(12):2077-91. PubMed ID: 25273892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complete Chloroplast Genome Sequence of Tartary Buckwheat (Fagopyrum tataricum) and Comparative Analysis with Common Buckwheat (F. esculentum).
    Cho KS; Yun BK; Yoon YH; Hong SY; Mekapogu M; Kim KH; Yang TJ
    PLoS One; 2015; 10(5):e0125332. PubMed ID: 25966355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene flow signature in the S-allele region of cultivated buckwheat.
    Mizuno N; Yasui Y
    BMC Plant Biol; 2019 Apr; 19(1):125. PubMed ID: 30943914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome sequencing reveals the genetic architecture of heterostyly and domestication history of common buckwheat.
    Fawcett JA; Takeshima R; Kikuchi S; Yazaki E; Katsube-Tanaka T; Dong Y; Li M; Hunt HV; Jones MK; Lister DL; Ohsako T; Ogiso-Tanaka E; Fujii K; Hara T; Matsui K; Mizuno N; Nishimura K; Nakazaki T; Saito H; Takeuchi N; Ueno M; Matsumoto D; Norizuki M; Shirasawa K; Li C; Hirakawa H; Ota T; Yasui Y
    Nat Plants; 2023 Aug; 9(8):1236-1251. PubMed ID: 37563460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Draft genome sequence of an inbred line of Chenopodium quinoa, an allotetraploid crop with great environmental adaptability and outstanding nutritional properties.
    Yasui Y; Hirakawa H; Oikawa T; Toyoshima M; Matsuzaki C; Ueno M; Mizuno N; Nagatoshi Y; Imamura T; Miyago M; Tanaka K; Mise K; Tanaka T; Mizukoshi H; Mori M; Fujita Y
    DNA Res; 2016 Dec; 23(6):535-546. PubMed ID: 27458999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and computer analysis of the 5'-regulatory region of the seed storage protein gene from buckwheat (Fagopyrum esculentum Moench).
    Milisavljević MDj; Konstantinović MM; Brkljacić JM; Maksimović VR
    J Agric Food Chem; 2005 Mar; 53(6):2076-80. PubMed ID: 15769138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative and population genomics of buckwheat species reveal key determinants of flavor and fertility.
    Zhang K; He Y; Lu X; Shi Y; Zhao H; Li X; Li J; Liu Y; Ouyang Y; Tang Y; Ren X; Zhang X; Yang W; Sun Z; Zhang C; Quinet M; Luthar Z; Germ M; Kreft I; Janovská D; Meglič V; Pipan B; Georgiev MI; Studer B; Chapman MA; Zhou M
    Mol Plant; 2023 Sep; 16(9):1427-1444. PubMed ID: 37649255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Buckwheat heteromorphic self-incompatibility: genetics, genomics and application to breeding.
    Matsui K; Yasui Y
    Breed Sci; 2020 Mar; 70(1):32-38. PubMed ID: 32351302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. S-LOCUS EARLY FLOWERING 3 is exclusively present in the genomes of short-styled buckwheat plants that exhibit heteromorphic self-incompatibility.
    Yasui Y; Mori M; Aii J; Abe T; Matsumoto D; Sato S; Hayashi Y; Ohnishi O; Ota T
    PLoS One; 2012; 7(2):e31264. PubMed ID: 22312442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome analysis of filling stage seeds among three buckwheat species with emphasis on rutin accumulation.
    Gao J; Wang T; Liu M; Liu J; Zhang Z
    PLoS One; 2017; 12(12):e0189672. PubMed ID: 29261741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of a BAC library for buckwheat genome research - an application to positional cloning of agriculturally valuable traits.
    Yasui Y; Mori M; Matsumoto D; Ohnishi O; Campbell CG; Ota T
    Genes Genet Syst; 2008 Oct; 83(5):393-401. PubMed ID: 19168990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. History of the progressive development of genetic marker systems for common buckwheat.
    Yasui Y
    Breed Sci; 2020 Mar; 70(1):13-18. PubMed ID: 32351300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads.
    Wang Z; Hobson N; Galindo L; Zhu S; Shi D; McDill J; Yang L; Hawkins S; Neutelings G; Datla R; Lambert G; Galbraith DW; Grassa CJ; Geraldes A; Cronk QC; Cullis C; Dash PK; Kumar PA; Cloutier S; Sharpe AG; Wong GK; Wang J; Deyholos MK
    Plant J; 2012 Nov; 72(3):461-73. PubMed ID: 22757964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome Analysis Reveals Key Seed-Development Genes in Common Buckwheat (
    Li H; Lv Q; Deng J; Huang J; Cai F; Liang C; Chen Q; Wang Y; Zhu L; Zhang X; Chen Q
    Int J Mol Sci; 2019 Sep; 20(17):. PubMed ID: 31484314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-Wide Transcriptome Analysis Reveals Conserved and Distinct Molecular Mechanisms of Al Resistance in Buckwheat (Fagopyrum esculentum Moench) Leaves.
    Chen WW; Xu JM; Jin JF; Lou HQ; Fan W; Yang JL
    Int J Mol Sci; 2017 Aug; 18(9):. PubMed ID: 28846612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.