BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 27038051)

  • 1. The Influence of Active Carbon Supports Toward the Electrocatalytic Behavior of Fe3O4 Nanoparticles for the Extended Energy Generation of Mediatorless Microbial Fuel Cells.
    Park IH; Kim P; Gnana Kumar G; Nahm KS
    Appl Biochem Biotechnol; 2016 Aug; 179(7):1170-83. PubMed ID: 27038051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced electrical contact of microbes using Fe(3)O(4)/CNT nanocomposite anode in mediator-less microbial fuel cell.
    Park IH; Christy M; Kim P; Nahm KS
    Biosens Bioelectron; 2014 Aug; 58():75-80. PubMed ID: 24613972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene oxide/carbon nanotube composite hydrogels-versatile materials for microbial fuel cell applications.
    Kumar GG; Hashmi S; Karthikeyan C; GhavamiNejad A; Vatankhah-Varnoosfaderani M; Stadler FJ
    Macromol Rapid Commun; 2014 Nov; 35(21):1861-5. PubMed ID: 25228415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of iron oxide/partly graphitized carbon composites as a high-efficiency and low-cost cathode catalyst for microbial fuel cells.
    Ma M; Dai Y; Zou JL; Wang L; Pan K; Fu HG
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):13438-47. PubMed ID: 25084054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction and performance evaluation of mediator-less microbial fuel cell using carbon nanotubes as an anode material.
    Roh SH; Kim SI
    J Nanosci Nanotechnol; 2012 May; 12(5):4252-5. PubMed ID: 22852384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform.
    Teymourian H; Salimi A; Khezrian S
    Biosens Bioelectron; 2013 Nov; 49():1-8. PubMed ID: 23708810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-pot green synthesis of reduced graphene oxide (RGO)/Fe3O4 nanocomposites and its catalytic activity toward methylene blue dye degradation.
    Vinothkannan M; Karthikeyan C; Gnana kumar G; Kim AR; Yoo DJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():256-64. PubMed ID: 25311523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nickel oxide and carbon nanotube composite (NiO/CNT) as a novel cathode non-precious metal catalyst in microbial fuel cells.
    Huang J; Zhu N; Yang T; Zhang T; Wu P; Dang Z
    Biosens Bioelectron; 2015 Oct; 72():332-9. PubMed ID: 26002018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-pot synthesis of magnetite nanorods/graphene composites and its catalytic activity toward electrochemical detection of dopamine.
    Salamon J; Sathishkumar Y; Ramachandran K; Lee YS; Yoo DJ; Kim AR; Gnana Kumar G
    Biosens Bioelectron; 2015 Feb; 64():269-76. PubMed ID: 25240127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the power generation of microbial fuel cells by modifying the anode with single-wall carbon nanohorns.
    Yang J; Cheng S; Sun Y; Li C
    Biotechnol Lett; 2017 Oct; 39(10):1515-1520. PubMed ID: 28664313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells.
    Liu J; Qiao Y; Guo CX; Lim S; Song H; Li CM
    Bioresour Technol; 2012 Jun; 114():275-80. PubMed ID: 22483349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Influence of carboxylic carbon nanotube supported platinum catalyst on cathode oxygen reduction performance of MFC].
    Tu LX; Zhu NW; Wu PX; Li P; Wu JH
    Huan Jing Ke Xue; 2013 Apr; 34(4):1617-22. PubMed ID: 23798151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanotubular MnO2/graphene oxide composites for the application of open air-breathing cathode microbial fuel cells.
    Gnana Kumar G; Awan Z; Suk Nahm K; Xavier JS
    Biosens Bioelectron; 2014 Mar; 53():528-34. PubMed ID: 24240107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon nanotube supported MnO₂ catalysts for oxygen reduction reaction and their applications in microbial fuel cells.
    Lu M; Kharkwal S; Ng HY; Li SF
    Biosens Bioelectron; 2011 Aug; 26(12):4728-32. PubMed ID: 21676607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparative study of graphene-coated stainless steel fiber felt and carbon cloth as anodes in MFCs.
    Hou J; Liu Z; Li Y; Yang S; Zhou Y
    Bioprocess Biosyst Eng; 2015 May; 38(5):881-8. PubMed ID: 25428842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene/Fe
    Song RB; Zhao CE; Gai PP; Guo D; Jiang LP; Zhang Q; Zhang JR; Zhu JJ
    Chem Asian J; 2017 Feb; 12(3):308-313. PubMed ID: 27925443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Layer-by-layer self-assembled carbon nanotube electrode for microbial fuel cells application.
    Roh SH
    J Nanosci Nanotechnol; 2013 Jun; 13(6):4158-61. PubMed ID: 23862465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boosting the anode performance of microbial fuel cells with a bacteria-derived biological iron oxide/carbon nanocomposite catalyst.
    Yang Q; Yang S; Liu G; Zhou B; Yu X; Yin Y; Yang J; Zhao H
    Chemosphere; 2021 Apr; 268():128800. PubMed ID: 33143885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchically Porous N-Doped Carbon Nanotubes/Reduced Graphene Oxide Composite for Promoting Flavin-Based Interfacial Electron Transfer in Microbial Fuel Cells.
    Wu X; Qiao Y; Shi Z; Tang W; Li CM
    ACS Appl Mater Interfaces; 2018 Apr; 10(14):11671-11677. PubMed ID: 29557635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Synthesis of Fe/nitrogen-doped Carbon Nanotube/Nanoparticle Composite and Its Catalytic Performance in Oxygen Reduction].
    Yang TT; Zhu NW; Lu Y; Wu PX
    Huan Jing Ke Xue; 2016 Jan; 37(1):350-8. PubMed ID: 27078977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.