These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 27038309)
1. Declining water yield from forested mountain watersheds in response to climate change and forest mesophication. Caldwell PV; Miniat CF; Elliott KJ; Swank WT; Brantley ST; Laseter SH Glob Chang Biol; 2016 Sep; 22(9):2997-3012. PubMed ID: 27038309 [TBL] [Abstract][Full Text] [Related]
2. Divergent phenological response to hydroclimate variability in forested mountain watersheds. Hwang T; Band LE; Miniat CF; Song C; Bolstad PV; Vose JM; Love JP Glob Chang Biol; 2014 Aug; 20(8):2580-95. PubMed ID: 24677382 [TBL] [Abstract][Full Text] [Related]
3. Ecohydrological assessment of the water balance of the world's highest elevation tropical forest (Polylepis). Mosquera GM; Marín F; Carabajo-Hidalgo A; Asbjornsen H; Célleri R; Crespo P Sci Total Environ; 2024 Sep; 941():173671. PubMed ID: 38825194 [TBL] [Abstract][Full Text] [Related]
4. Disturbances catalyze the adaptation of forest ecosystems to changing climate conditions. Thom D; Rammer W; Seidl R Glob Chang Biol; 2017 Jan; 23(1):269-282. PubMed ID: 27633953 [TBL] [Abstract][Full Text] [Related]
5. Is climate an important driver of post-European vegetation change in the Eastern United States? Nowacki GJ; Abrams MD Glob Chang Biol; 2015 Jan; 21(1):314-34. PubMed ID: 24953341 [TBL] [Abstract][Full Text] [Related]
6. Can forest management be used to sustain water-based ecosystem services in the face of climate change? Ford CR; Laseter SH; Swank WT; Vose JM Ecol Appl; 2011 Sep; 21(6):2049-67. PubMed ID: 21939043 [TBL] [Abstract][Full Text] [Related]
7. Modeled ecohydrological responses to climate change at seven small watersheds in the northeastern United States. Pourmokhtarian A; Driscoll CT; Campbell JL; Hayhoe K; Stoner AM; Adams MB; Burns D; Fernandez I; Mitchell MJ; Shanley JB Glob Chang Biol; 2017 Feb; 23(2):840-856. PubMed ID: 27472269 [TBL] [Abstract][Full Text] [Related]
8. Climate, forest growing season, and evapotranspiration changes in the central Appalachian Mountains, USA. Gaertner BA; Zegre N; Warner T; Fernandez R; He Y; Merriam ER Sci Total Environ; 2019 Feb; 650(Pt 1):1371-1381. PubMed ID: 30308824 [TBL] [Abstract][Full Text] [Related]
10. Shifts in tree functional composition amplify the response of forest biomass to climate. Zhang T; Niinemets Ü; Sheffield J; Lichstein JW Nature; 2018 Apr; 556(7699):99-102. PubMed ID: 29562235 [TBL] [Abstract][Full Text] [Related]
11. Assessing streamflow sensitivity of forested headwater catchments to disturbance and climate change in the central Appalachian Mountains region, USA. Young D; Zégre N; Edwards P; Fernandez R Sci Total Environ; 2019 Dec; 694():133382. PubMed ID: 31756790 [TBL] [Abstract][Full Text] [Related]
12. Interactive effects of ozone and climate on water use, soil moisture content and streamflow in a southern Appalachian forest in the USA. McLaughlin SB; Wullschleger SD; Sun G; Nosal M New Phytol; 2007; 174(1):125-136. PubMed ID: 17335503 [TBL] [Abstract][Full Text] [Related]
13. Long-term effects of climate change on carbon storage and tree species composition in a dry deciduous forest. Fekete I; Lajtha K; Kotroczó Z; Várbíró G; Varga C; Tóth JA; Demeter I; Veperdi G; Berki I Glob Chang Biol; 2017 Aug; 23(8):3154-3168. PubMed ID: 28222248 [TBL] [Abstract][Full Text] [Related]
14. The effects of future nationwide forest transition to discharge in the 21st century with regard to general circulation model climate change scenarios. Mouri G; Nakano K; Tsuyama I; Tanaka N Environ Res; 2016 Aug; 149():288-296. PubMed ID: 26852164 [TBL] [Abstract][Full Text] [Related]
15. Forests growing under dry conditions have higher hydrological resilience to drought than do more humid forests. Helman D; Lensky IM; Yakir D; Osem Y Glob Chang Biol; 2017 Jul; 23(7):2801-2817. PubMed ID: 27809388 [TBL] [Abstract][Full Text] [Related]
16. Response of Sierra Nevada forests to projected climate-wildfire interactions. Liang S; Hurteau MD; Westerling AL Glob Chang Biol; 2017 May; 23(5):2016-2030. PubMed ID: 27801532 [TBL] [Abstract][Full Text] [Related]
17. A climate change-induced threat to the ecological resilience of a subtropical monsoon evergreen broad-leaved forest in Southern China. Zhou G; Peng C; Li Y; Liu S; Zhang Q; Tang X; Liu J; Yan J; Zhang D; Chu G Glob Chang Biol; 2013 Apr; 19(4):1197-210. PubMed ID: 23504896 [TBL] [Abstract][Full Text] [Related]
18. Effects of stand age, tree species, and climate on water table fluctuations and estimated evapotranspiration in managed peatland forests. Stelling JM; Slesak RA; Windmuller-Campione MA; Grinde A J Environ Manage; 2023 Aug; 339():117783. PubMed ID: 37058930 [TBL] [Abstract][Full Text] [Related]
19. Aerodynamic effects cause higher forest evapotranspiration and water yield reductions after wildfires in tall forests. Meili N; Beringer J; Zhao J; Fatichi S Glob Chang Biol; 2024 Jan; 30(1):e16995. PubMed ID: 37916642 [TBL] [Abstract][Full Text] [Related]
20. Effect of Tree-to-Shrub Type Conversion in Lower Montane Forests of the Sierra Nevada (USA) on Streamflow. Bart RR; Tague CL; Moritz MA PLoS One; 2016; 11(8):e0161805. PubMed ID: 27575592 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]