BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 27038382)

  • 1. Impacts of ferrate oxidation on natural organic matter and disinfection byproduct precursors.
    Jiang Y; Goodwill JE; Tobiason JE; Reckhow DA
    Water Res; 2016 Jun; 96():114-25. PubMed ID: 27038382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of ferrate and ozone pre-oxidation on disinfection byproduct formation from chlorination and chloramination.
    Jiang Y; Goodwill JE; Tobiason JE; Reckhow DA
    Water Res; 2019 Jun; 156():110-124. PubMed ID: 30909124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of metal ions on disinfection byproduct formation during chlorination of natural organic matter and surrogates.
    Zhao Y; Yang HW; Liu ST; Tang S; Wang XM; Xie YF
    Chemosphere; 2016 Feb; 144():1074-82. PubMed ID: 26454116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of disinfection byproducts formation in ferrate(VI) pre-oxidation of NOM and its model compounds followed by chlorination.
    Gan W; Sharma VK; Zhang X; Yang L; Yang X
    J Hazard Mater; 2015 Jul; 292():197-204. PubMed ID: 25814185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-step Ferrate(VI) treatment as a core process for alternative drinking water treatment.
    Zhang H; Zheng L; Li Z; Pi K; Deng Y
    Chemosphere; 2020 Mar; 242():125134. PubMed ID: 31677515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of disinfection by-products after pre-oxidation with chlorine dioxide or ferrate.
    Yang X; Guo W; Zhang X; Chen F; Ye T; Liu W
    Water Res; 2013 Oct; 47(15):5856-64. PubMed ID: 23906778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reducing natural organic matter and disinfection by-product precursors by alternating oxic and anoxic conditions during engineered short residence time riverbank filtration: A laboratory-scale column study.
    Liu P; Farré MJ; Keller J; Gernjak W
    Sci Total Environ; 2016 Sep; 565():616-625. PubMed ID: 27203522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of pre-ozonation on the formation and speciation of DBPs.
    Hua G; Reckhow DA
    Water Res; 2013 Sep; 47(13):4322-30. PubMed ID: 23764583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Addressing harmful algal blooms (HABs) impacts with ferrate(VI): Simultaneous removal of algal cells and toxins for drinking water treatment.
    Deng Y; Wu M; Zhang H; Zheng L; Acosta Y; Hsu TD
    Chemosphere; 2017 Nov; 186():757-761. PubMed ID: 28822256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of integrated ferrate-polyaluminum chloride coagulation as a treatment technology for removing freshwater humic substances.
    Amano M; Lohwacharin J; Dubechot A; Takizawa S
    J Environ Manage; 2018 Apr; 212():323-331. PubMed ID: 29453117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficiency of pre-oxidation of natural organic matter for the mitigation of disinfection byproducts: Electron donating capacity and UV absorbance as surrogate parameters.
    Rougé V; von Gunten U; Allard S
    Water Res; 2020 Dec; 187():116418. PubMed ID: 33011567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Examining the interrelationship between DOC, bromide and chlorine dose on DBP formation in drinking water--a case study.
    Bond T; Huang J; Graham NJ; Templeton MR
    Sci Total Environ; 2014 Feb; 470-471():469-79. PubMed ID: 24176694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bench-scale testing of a magnetic ion exchange resin for removal of disinfection by-product precursors.
    Boyer TH; Singer PC
    Water Res; 2005 Apr; 39(7):1265-76. PubMed ID: 15862326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural organic matter as precursor to disinfection byproducts and its removal using conventional and advanced processes: state of the art review.
    Tak S; Vellanki BP
    J Water Health; 2018 Oct; 16(5):681-703. PubMed ID: 30285951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Treatment of disinfection by-product precursors.
    Bond T; Goslan EH; Parsons SA; Jefferson B
    Environ Technol; 2011 Jan; 32(1-2):1-25. PubMed ID: 21473265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of different solutes, natural organic matter, and particulate Fe(III) on ferrate(VI) decomposition in aqueous solutions.
    Jiang Y; Goodwill JE; Tobiason JE; Reckhow DA
    Environ Sci Technol; 2015 Mar; 49(5):2841-8. PubMed ID: 25629296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of ozonation, powdered activated carbon adsorption, and coagulation on the removal of disinfection by-product precursors in reservoir water.
    Wang F; Gao B; Yue Q; Bu F; Shen X
    Environ Sci Pollut Res Int; 2017 Jul; 24(21):17945-17954. PubMed ID: 28620853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using fluorescence-parallel factor analysis for assessing disinfection by-product formation and natural organic matter removal efficiency in secondary treated synthetic drinking waters.
    Watson K; Farré MJ; Leusch FDL; Knight N
    Sci Total Environ; 2018 Nov; 640-641():31-40. PubMed ID: 29852445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation and coagulation of humic substances by potassium ferrate.
    Graham NJ; Khoi TT; Jiang JQ
    Water Sci Technol; 2010; 62(4):929-36. PubMed ID: 20729598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidation of nitrogen-containing pollutants by novel ferrate(VI) technology: a review.
    Sharma VK
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(6):645-67. PubMed ID: 20390913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.