These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 27038569)

  • 1. Vapor intrusion risk of lead scavengers 1,2-dibromoethane (EDB) and 1,2-dichloroethane (DCA).
    Ma J; Li H; Spiese R; Wilson J; Yan G; Guo S
    Environ Pollut; 2016 Jun; 213():825-832. PubMed ID: 27038569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anaerobic biodegradation of ethylene dibromide and 1,2-dichloroethane in the presence of fuel hydrocarbons.
    Henderson JK; Freedman DL; Falta RW; Kuder T; Wilson JT
    Environ Sci Technol; 2008 Feb; 42(3):864-70. PubMed ID: 18323114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vapor intrusion risk of fuel ether oxygenates methyl tert-butyl ether (MTBE), tert-amyl methyl ether (TAME) and ethyl tert-butyl ether (ETBE): A modeling study.
    Ma J; Xiong D; Li H; Ding Y; Xia X; Yang Y
    J Hazard Mater; 2017 Jun; 332():10-18. PubMed ID: 28279869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the source to building lateral separation distance in petroleum vapor intrusion.
    Verginelli I; Capobianco O; Baciocchi R
    J Contam Hydrol; 2016 Jun; 189():58-67. PubMed ID: 27116639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of the effect of remediation on EDB and 1,2-DCA plumes at sites contaminated by leaded gasoline.
    Henderson JK; Falta RW; Freedman DL
    J Contam Hydrol; 2009 Aug; 108(1-2):29-45. PubMed ID: 19535166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of 1,2-dichloroethane and 1,2-dibromoethane biodegradation in anaerobic enrichment cultures.
    Yu R; Peethambaram HS; Falta RW; Verce MF; Henderson JK; Bagwell CE; Brigmon RL; Freedman DL
    Appl Environ Microbiol; 2013 Feb; 79(4):1359-67. PubMed ID: 23263950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing aerobic biodegradation of 1,2-dibromoethane in groundwater using ethane or propane and inorganic nutrients.
    Hatzinger PB; Streger SH; Begley JF
    J Contam Hydrol; 2015 Jan; 172():61-70. PubMed ID: 25437228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling capillary fringe effect on petroleum vapor intrusion from groundwater contamination.
    Yao Y; Mao F; Xiao Y; Luo J
    Water Res; 2019 Mar; 150():111-119. PubMed ID: 30508708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Field data and numerical modeling: A multiple lines of evidence approach for assessing vapor intrusion exposure risks.
    Pennell KG; Scammell MK; McClean MD; Suuberg EM; Moradi A; Roghani M; Ames J; Friguglietti L; Indeglia PA; Shen R; Yao Y; Heiger-Bernays WJ
    Sci Total Environ; 2016 Jun; 556():291-301. PubMed ID: 26977535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vapor intrusion screening model for the evaluation of risk-based vertical exclusion distances at petroleum contaminated sites.
    Verginelli I; Baciocchi R
    Environ Sci Technol; 2014 Nov; 48(22):13263-72. PubMed ID: 25329246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradation of ethylene dibromide (1,2-dibromoethane [EDB]) in microcosms simulating in situ and biostimulated conditions.
    McKeever R; Sheppard D; Nüsslein K; Baek KH; Rieber K; Ergas SJ; Forbes R; Hilyard M; Park C
    J Hazard Mater; 2012 Mar; 209-210():92-8. PubMed ID: 22301079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation of low concentrations of 1,2-dibromoethane in groundwater is enhanced by phenol.
    Baek K; Wang M; McKeever R; Rieber K; Park C; Nüsslein K
    Appl Microbiol Biotechnol; 2014 Feb; 98(3):1329-38. PubMed ID: 23715851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-occurrence of genes for aerobic and anaerobic biodegradation of dichloroethane in organochlorine-contaminated groundwater.
    Munro JE; Kimyon Ö; Rich DJ; Koenig J; Tang S; Low A; Lee M; Manefield M; Coleman NV
    FEMS Microbiol Ecol; 2017 Nov; 93(11):. PubMed ID: 29040474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical model investigation for potential methane explosion and benzene vapor intrusion associated with high-ethanol blend releases.
    Ma J; Luo H; Devaull GE; Rixey WG; Alvarez PJ
    Environ Sci Technol; 2014; 48(1):474-81. PubMed ID: 24354291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity and uncertainty analysis for Abreu & Johnson numerical vapor intrusion model.
    Ma J; Yan G; Li H; Guo S
    J Hazard Mater; 2016 Mar; 304():522-31. PubMed ID: 26619051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficacy of pentane, toluene, and benzene to support aerobic cometabolism of ethylene dibromide.
    Danko AS; Leitão PO; Verce MF; Freedman DL
    N Biotechnol; 2012 Nov; 30(1):39-43. PubMed ID: 22613211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Petroleum Vapor Intrusion Model Involving Upward Advective Soil Gas Flow Due to Methane Generation.
    Yao Y; Wu Y; Wang Y; Verginelli I; Zeng T; Suuberg EM; Jiang L; Wen Y; Ma J
    Environ Sci Technol; 2015 Oct; 49(19):11577-85. PubMed ID: 26322369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating the Role of Soil Texture in Petroleum Vapor Intrusion.
    Yao Y; Mao F; Xiao Y; Chen H; Verginelli I; Luo J
    J Environ Qual; 2018 Sep; 47(5):1179-1185. PubMed ID: 30272787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ bioremediation of 1,2-dibromoethane (EDB) in groundwater to part-per-trillion concentrations using cometabolism.
    Hatzinger PB; Begley JF; Lippincott DR; Bodour A; Forbes R
    J Contam Hydrol; 2018 Nov; 218():120-129. PubMed ID: 30293921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of contaminant subslab concentration in petroleum vapor intrusion.
    Yao Y; Yang F; Suuberg EM; Provoost J; Liu W
    J Hazard Mater; 2014 Aug; 279():336-47. PubMed ID: 25124892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.