These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 27038569)
21. Exposure assessment modeling for volatiles--towards an Australian indoor vapor intrusion model. Turczynowicz L; Robinson NI J Toxicol Environ Health A; 2007 Oct; 70(19):1619-34. PubMed ID: 17763080 [TBL] [Abstract][Full Text] [Related]
22. Temporal moisture content variability beneath and external to a building and the potential effects on vapor intrusion risk assessment. Tillman FD; Weaver JW Sci Total Environ; 2007 Jun; 379(1):1-15. PubMed ID: 17442380 [TBL] [Abstract][Full Text] [Related]
23. Derivation of aquatic screening benchmarks for 1,2-dibromoethane. Kszos LA; Talmage SS; Morris LG; Konetsky BK; Rottero T Arch Environ Contam Toxicol; 2003 Jul; 45(1):66-71. PubMed ID: 12948174 [TBL] [Abstract][Full Text] [Related]
24. Molecular approach to evaluate biostimulation of 1,2-dibromoethane in contaminated groundwater. Baek K; McKeever R; Rieber K; Sheppard D; Park C; Ergas SJ; Nüsslein K Bioresour Technol; 2012 Nov; 123():207-13. PubMed ID: 22940321 [TBL] [Abstract][Full Text] [Related]
25. Relationship between vapor intrusion and human exposure to trichloroethylene. Archer NP; Bradford CM; Villanacci JF; Crain NE; Corsi RL; Chambers DM; Burk T; Blount BC J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(13):1360-8. PubMed ID: 26259926 [TBL] [Abstract][Full Text] [Related]
26. Screening houses for vapor intrusion risks: a multiple regression analysis approach. Johnston JE; Gibson JM Environ Sci Technol; 2013 Jun; 47(11):5595-602. PubMed ID: 23659435 [TBL] [Abstract][Full Text] [Related]
27. Examination of the U.S. EPA's vapor intrusion database based on models. Yao Y; Shen R; Pennell KG; Suuberg EM Environ Sci Technol; 2013 Feb; 47(3):1425-33. PubMed ID: 23293835 [TBL] [Abstract][Full Text] [Related]
28. Carbon Isotope Fractionation of 1,2-Dibromoethane by Biological and Abiotic Processes. Koster van Groos PG; Hatzinger PB; Streger SH; Vainberg S; Philp RP; Kuder T Environ Sci Technol; 2018 Mar; 52(6):3440-3448. PubMed ID: 29493235 [TBL] [Abstract][Full Text] [Related]
29. Effect of vapor source-building separation and building construction on soil vapor intrusion as studied with a three-dimensional numerical model. Abreu LD; Johnson PC Environ Sci Technol; 2005 Jun; 39(12):4550-61. PubMed ID: 16047792 [TBL] [Abstract][Full Text] [Related]
30. Development of a modular vapor intrusion model with variably saturated and non-isothermal vadose zone. Bekele DN; Naidu R; Chadalavada S Environ Geochem Health; 2018 Apr; 40(2):887-902. PubMed ID: 29022193 [TBL] [Abstract][Full Text] [Related]
31. Indoor vapor intrusion with oxygen-limited biodegradation for a subsurface gasoline source. DeVaull GE Environ Sci Technol; 2007 May; 41(9):3241-8. PubMed ID: 17539532 [TBL] [Abstract][Full Text] [Related]
32. Aerobic and Anaerobic Biodegradation of 1,2-Dibromoethane by a Microbial Consortium under Simulated Groundwater Conditions. Wang Q; Yang M; Song X; Tang S; Yu L Int J Environ Res Public Health; 2019 Oct; 16(19):. PubMed ID: 31597267 [TBL] [Abstract][Full Text] [Related]
33. Simulating the effect of aerobic biodegradation on soil vapor intrusion into buildings: influence of degradation rate, source concentration, and depth. Abreu LD; Johnson PC Environ Sci Technol; 2006 Apr; 40(7):2304-15. PubMed ID: 16646467 [TBL] [Abstract][Full Text] [Related]
34. Leaded-gasoline additives still contaminate groundwater. Falta RW; Bulsara N; Henderson JK; Mayer RA Environ Sci Technol; 2005 Sep; 39(18):379A-384A. PubMed ID: 16201608 [No Abstract] [Full Text] [Related]
35. Reactive modelling of 1,2-DCA and DOC near the shoreline. Colombani N; Pantano A; Mastrocicco M; Petitta M J Contam Hydrol; 2014 Nov; 169():100-111. PubMed ID: 25168961 [TBL] [Abstract][Full Text] [Related]
36. Association of ethylene dibromide (EDB) with mature cranberry (Vaccinium macrocarpon) fruit. Xia K; Rice CW J Agric Food Chem; 2001 Mar; 49(3):1246-52. PubMed ID: 11312844 [TBL] [Abstract][Full Text] [Related]
37. Estimating the oxygenated zone beneath building foundations for petroleum vapor intrusion assessment. Verginelli I; Yao Y; Wang Y; Ma J; Suuberg EM J Hazard Mater; 2016 Jul; 312():84-96. PubMed ID: 27016669 [TBL] [Abstract][Full Text] [Related]
38. Methane bioattenuation and implications for explosion risk reduction along the groundwater to soil surface pathway above a plume of dissolved ethanol. Ma J; Rixey WG; DeVaull GE; Stafford BP; Alvarez PJ Environ Sci Technol; 2012 Jun; 46(11):6013-9. PubMed ID: 22568485 [TBL] [Abstract][Full Text] [Related]
39. Oxygen transport from the atmosphere to soil gas beneath a slab-on-grade foundation overlying petroleum-impacted soil. Lundegard PD; Johnson PC; Dahlen P Environ Sci Technol; 2008 Aug; 42(15):5534-40. PubMed ID: 18754472 [TBL] [Abstract][Full Text] [Related]
40. The use of indoor air measurements to evaluate intrusion of subsurface VOC vapors into buildings. Hers I; Zapf-Gilje R; Li L; Atwater J J Air Waste Manag Assoc; 2001 Sep; 51(9):1318-31. PubMed ID: 11575885 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]