These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 2703881)

  • 21. Electric organ morphology of Sternopygus macrurus, a wave-type, weakly electric fish with a sexually dimorphic EOD.
    Mills A; Zakon HH; Marchaterre MA; Bass AH
    J Neurobiol; 1992 Sep; 23(7):920-32. PubMed ID: 1431851
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plasticity of feedback inputs in the apteronotid electrosensory system.
    Bastian J
    J Exp Biol; 1999 May; 202(Pt 10):1327-37. PubMed ID: 10210673
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Human chorionic gonadotropin-induced shifts in the electrosensory system of the weakly electric fish, Sternopygus.
    Zakon HH; Yan HY; Thomas P
    J Neurobiol; 1990 Jul; 21(5):826-33. PubMed ID: 2394995
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sensory Specializations of Mormyrid Fish Are Associated with Species Differences in Electric Signal Localization Behavior.
    Vélez A; Ryoo DY; Carlson BA
    Brain Behav Evol; 2018; 92(3-4):125-141. PubMed ID: 30820010
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electric organ discharge frequency and plasma sex steroid levels during gonadal recrudescence in a natural population of the weakly electric fish Sternopygus macrurus.
    Zakon HH; Thomas P; Yan HY
    J Comp Physiol A; 1991 Oct; 169(4):493-9. PubMed ID: 1779420
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tuberous electroreceptor organs form in denervated regenerating skin of a weakly electric fish.
    Weisleder P; Lu Y; Zakon HH
    J Comp Neurol; 1996 Apr; 367(4):563-74. PubMed ID: 8731226
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The jamming avoidance response in Eigenmannia is controlled by two separate motor pathways.
    Metzner W
    J Neurosci; 1993 May; 13(5):1862-78. PubMed ID: 8478680
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Behavioral actions of androgens and androgen receptor expression in the electrocommunication system of an electric fish, Eigenmannia virescens.
    Dunlap KD; Zakon HH
    Horm Behav; 1998 Aug; 34(1):30-8. PubMed ID: 9735226
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effects of androgens and estrogen on the external morphology and electric organ discharge waveform of Gnathonemus petersii (Mormyridae, Teleostei).
    Landsman RE; Harding CF; Moller P; Thomas P
    Horm Behav; 1990 Dec; 24(4):532-53. PubMed ID: 2286367
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Individual variation in and androgen-modulation of the sodium current in electric organ.
    Ferrari MB; McAnelly ML; Zakon HH
    J Neurosci; 1995 May; 15(5 Pt 2):4023-32. PubMed ID: 7751963
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The evolution and development of vertebrate lateral line electroreceptors.
    Baker CV; Modrell MS; Gillis JA
    J Exp Biol; 2013 Jul; 216(Pt 13):2515-22. PubMed ID: 23761476
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hormonal modulation of communication signals in electric fish.
    Zakon HH
    Dev Neurosci; 1996; 18(1-2):115-23. PubMed ID: 8840090
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electroreceptor model of the weakly electric fish Gnathonemus petersii. I. The model and the origin of differences between A- and B-receptors.
    Shuai J; Kashimori Y; Kambara T
    Biophys J; 1998 Oct; 75(4):1712-26. PubMed ID: 9746513
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An in vitro physiological preparation of a vertebrate communicatory behavior: chirping in the weakly electric fish, Apteronotus.
    Dye J
    J Comp Physiol A; 1988 Aug; 163(4):445-58. PubMed ID: 3184007
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Frequency tuning in the electroreceptive periphery.
    Olson ES; Smullin LD
    Biophys J; 1989 Jun; 55(6):1191-204. PubMed ID: 2765655
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish. II. Intra-axonal recordings show initial stages of central processing.
    Bell CC
    J Neurophysiol; 1990 Feb; 63(2):303-18. PubMed ID: 2313347
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distribution of Kv1-like potassium channels in the electromotor and electrosensory systems of the weakly electric fish Apteronotus leptorhynchus.
    Smith GT; Unguez GA; Weber CM
    J Neurobiol; 2006 Aug; 66(9):1011-31. PubMed ID: 16779822
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of difference frequency on electrocommunication: chirp production and encoding in a species of weakly electric fish, Apteronotus leptorhynchus.
    Hupé GJ; Lewis JE; Benda J
    J Physiol Paris; 2008; 102(4-6):164-72. PubMed ID: 18984046
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Directional sensitivity of tuberous electroreceptors: polarity preferences and frequency tuning.
    McKibben JR; Hopkins CD; Yager DD
    J Comp Physiol A; 1993 Oct; 173(4):415-24. PubMed ID: 8254567
    [TBL] [Abstract][Full Text] [Related]  

  • 40. From distributed sensory processing to discrete motor representations in the diencephalon of the electric fish, Eigenmannia.
    Keller CH; Heiligenberg W
    J Comp Physiol A; 1989 Feb; 164(5):565-76. PubMed ID: 2565397
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.