These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
413 related articles for article (PubMed ID: 27038859)
1. The contribution of the pineal gland on daily rhythms and masking in diurnal grass rats, Arvicanthis niloticus. Shuboni DD; Agha AA; Groves TK; Gall AJ Behav Processes; 2016 Jul; 128():1-8. PubMed ID: 27038859 [TBL] [Abstract][Full Text] [Related]
2. The pineal gland: photoreception and coupling of behavioral, metabolic, and cardiovascular circadian outputs. Warren WS; Cassone VM J Biol Rhythms; 1995 Mar; 10(1):64-79. PubMed ID: 7632982 [TBL] [Abstract][Full Text] [Related]
3. Acute behavioral responses to light and darkness in nocturnal Mus musculus and diurnal Arvicanthis niloticus. Shuboni DD; Cramm S; Yan L; Nunez AA; Smale L J Biol Rhythms; 2012 Aug; 27(4):299-307. PubMed ID: 22855574 [TBL] [Abstract][Full Text] [Related]
4. Rhythmic cFos expression in the ventral subparaventricular zone influences general activity rhythms in the Nile grass rat, Arvicanthis niloticus. Schwartz MD; Nuñez AA; Smale L Chronobiol Int; 2009 Oct; 26(7):1290-306. PubMed ID: 19916832 [TBL] [Abstract][Full Text] [Related]
5. Diurnal and circadian rhythms in melatonin synthesis in the turkey pineal gland and retina. Zawilska JB; Lorenc A; Berezińska M; Vivien-Roels B; Pévet P; Skene DJ Gen Comp Endocrinol; 2006 Jan; 145(2):162-8. PubMed ID: 16226264 [TBL] [Abstract][Full Text] [Related]
6. Plastic oscillators and fixed rhythms: changes in the phase of clock-gene rhythms in the PVN are not reflected in the phase of the melatonin rhythm of grass rats. Martin-Fairey CA; Ramanathan C; Stowie A; Walaszczyk E; Smale L; Nunez AA Neuroscience; 2015 Mar; 288():178-86. PubMed ID: 25575946 [TBL] [Abstract][Full Text] [Related]
7. The effects of ambient temperature and lighting intensity on wheel-running behavior in a diurnal rodent, the Nile grass rat (Arvicanthis niloticus). Fogo GM; Goodwin AM; Khacherian OS; Ledbetter BJ; Gall AJ J Comp Psychol; 2019 May; 133(2):215-222. PubMed ID: 30394785 [TBL] [Abstract][Full Text] [Related]
8. Functional and anatomical variations in retinorecipient brain areas in Shuboni-Mulligan DD; Cavanaugh BL; Tonson A; Shapiro EM; Gall AJ Chronobiol Int; 2019 Nov; 36(11):1464-1481. PubMed ID: 31441335 [TBL] [Abstract][Full Text] [Related]
9. Phase-advanced daily rhythms of melatonin, body temperature, and locomotor activity in food-restricted rats fed during daytime. Challet E; Pévet P; Vivien-Roels B; Malan A J Biol Rhythms; 1997 Feb; 12(1):65-79. PubMed ID: 9104691 [TBL] [Abstract][Full Text] [Related]
10. Daily oscillation in melatonin synthesis in the Turkey pineal gland and retina: diurnal and circadian rhythms. Zawilska JB; Lorenc A; Berezińska M; Vivien-Roels B; Pévet P; Skene DJ Chronobiol Int; 2006; 23(1-2):341-50. PubMed ID: 16687307 [TBL] [Abstract][Full Text] [Related]
11. Acute effects of light on the brain and behavior of diurnal Arvicanthis niloticus and nocturnal Mus musculus. Shuboni DD; Cramm SL; Yan L; Ramanathan C; Cavanaugh BL; Nunez AA; Smale L Physiol Behav; 2015 Jan; 138():75-86. PubMed ID: 25447482 [TBL] [Abstract][Full Text] [Related]
12. Pinealectomy does not affect the entrainment to light nor the generation of the circadian demand-feeding rhythms of rainbow trout. Sánchez-Vázquez FJ; Iigo M; Madrid JA; Tabata M Physiol Behav; 2000 Jun 1-15; 69(4-5):455-61. PubMed ID: 10913784 [TBL] [Abstract][Full Text] [Related]
13. Day or night administration of ketamine and pentobarbital differentially affect circadian rhythms of pineal melatonin secretion and locomotor activity in rats. Mihara T; Kikuchi T; Kamiya Y; Koga M; Uchimoto K; Kurahashi K; Goto T Anesth Analg; 2012 Oct; 115(4):805-13. PubMed ID: 22886841 [TBL] [Abstract][Full Text] [Related]
14. The pineal gland influences rat circadian activity rhythms in constant light. Cassone VM J Biol Rhythms; 1992; 7(1):27-40. PubMed ID: 1571591 [TBL] [Abstract][Full Text] [Related]
15. Human pineal physiology and functional significance of melatonin. Macchi MM; Bruce JN Front Neuroendocrinol; 2004; 25(3-4):177-95. PubMed ID: 15589268 [TBL] [Abstract][Full Text] [Related]
16. Involvement of the pineal gland in daily scheduling of the golden spiny mouse. Zisapel N; Barnea E; Anis Y; Izhaki I; Reiter RJ; Haim A Life Sci; 1998; 63(9):751-7. PubMed ID: 9740312 [TBL] [Abstract][Full Text] [Related]
17. Environmental control and adrenergic regulation of pineal activity in the diurnal tropical rodent, Arvicanthis ansorgei. Garidou-Boof ML; Sicard B; Bothorel B; Pitrosky B; Ribelayga C; Simonneaux V; Pévet P; Vivien-Roels B J Pineal Res; 2005 Apr; 38(3):189-97. PubMed ID: 15725341 [TBL] [Abstract][Full Text] [Related]
18. Daily variation of constitutively activated nuclear factor kappa B (NFKB) in rat pineal gland. Cecon E; Fernandes PA; Pinato L; Ferreira ZS; Markus RP Chronobiol Int; 2010 Jan; 27(1):52-67. PubMed ID: 20205557 [TBL] [Abstract][Full Text] [Related]
19. Effects of light and melatonin treatment on body temperature and melatonin secretion daily rhythms in a diurnal rodent, the fat sand rat. Schwimmer H; Mursu N; Haim A Chronobiol Int; 2010 Aug; 27(7):1401-19. PubMed ID: 20795883 [TBL] [Abstract][Full Text] [Related]
20. Suprachiasmatic Nucleus and Subparaventricular Zone Lesions Disrupt Circadian Rhythmicity but Not Light-Induced Masking Behavior in Nile Grass Rats. Gall AJ; Shuboni DD; Yan L; Nunez AA; Smale L J Biol Rhythms; 2016 Apr; 31(2):170-81. PubMed ID: 26801650 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]