These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 27038963)
1. Combined 2D and 3D tracking of surgical instruments for minimally invasive and robotic-assisted surgery. Du X; Allan M; Dore A; Ourselin S; Hawkes D; Kelly JD; Stoyanov D Int J Comput Assist Radiol Surg; 2016 Jun; 11(6):1109-19. PubMed ID: 27038963 [TBL] [Abstract][Full Text] [Related]
2. Operative time and learning curve between fluoroscopy-based instrument tracking and robot-assisted instrumentation for patients undergoing minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF). Wang TY; Mehta VA; Sankey EW; Lavoie S; Abd-El-Barr MM; Yarbrough CK Clin Neurol Neurosurg; 2021 Jul; 206():106698. PubMed ID: 34030076 [TBL] [Abstract][Full Text] [Related]
3. Tracking-by-detection of surgical instruments in minimally invasive surgery via the convolutional neural network deep learning-based method. Zhao Z; Voros S; Weng Y; Chang F; Li R Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):26-35. PubMed ID: 28937281 [TBL] [Abstract][Full Text] [Related]
4. Patch-based adaptive weighting with segmentation and scale (PAWSS) for visual tracking in surgical video. Du X; Allan M; Bodenstedt S; Maier-Hein L; Speidel S; Dore A; Stoyanov D Med Image Anal; 2019 Oct; 57():120-135. PubMed ID: 31299494 [TBL] [Abstract][Full Text] [Related]
5. Long Term Safety Area Tracking (LT-SAT) with online failure detection and recovery for robotic minimally invasive surgery. Penza V; Du X; Stoyanov D; Forgione A; Mattos LS; De Momi E Med Image Anal; 2018 Apr; 45():13-23. PubMed ID: 29329053 [TBL] [Abstract][Full Text] [Related]
6. Design and validation a minimally invasive robotic surgical instrument with decoupled pose and multi-DOF. Yang Y; Zhang H; Kong K; Su H; Li J J Robot Surg; 2024 Aug; 18(1):312. PubMed ID: 39110315 [TBL] [Abstract][Full Text] [Related]
7. Control of a hybrid robotic system for computer-assisted interventions in dynamic environments. Smoljkic G; Borghesan G; Devreker A; Poorten EV; Rosa B; De Praetere H; De Schutter J; Reynaerts D; Sloten JV Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1371-83. PubMed ID: 26662203 [TBL] [Abstract][Full Text] [Related]
8. Improved surgical instruments without coupled motion used in minimally invasive surgery. Niu G; Pan B; Zhang F; Feng H; Fu Y Int J Med Robot; 2018 Dec; 14(6):e1942. PubMed ID: 30058772 [TBL] [Abstract][Full Text] [Related]
9. Vision-based and marker-less surgical tool detection and tracking: a review of the literature. Bouget D; Allan M; Stoyanov D; Jannin P Med Image Anal; 2017 Jan; 35():633-654. PubMed ID: 27744253 [TBL] [Abstract][Full Text] [Related]
10. Soft tissue tracking for minimally invasive surgery: learning local deformation online. Mountney P; Yang GZ Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):364-72. PubMed ID: 18982626 [TBL] [Abstract][Full Text] [Related]
11. 3-D Pose Estimation of Articulated Instruments in Robotic Minimally Invasive Surgery. Allan M; Ourselin S; Hawkes DJ; Kelly JD; Stoyanov D IEEE Trans Med Imaging; 2018 May; 37(5):1204-1213. PubMed ID: 29727283 [TBL] [Abstract][Full Text] [Related]
12. Correlation filters tissue tracking with application to robotic minimally invasive surgery. Sun Y; Pan B; Fu Y Int J Med Robot; 2022 Dec; 18(6):e2440. PubMed ID: 35848917 [TBL] [Abstract][Full Text] [Related]
13. Endoscopic vision-based tracking of multiple surgical instruments during robot-assisted surgery. Ryu J; Choi J; Kim HC Artif Organs; 2013 Jan; 37(1):107-12. PubMed ID: 23043484 [TBL] [Abstract][Full Text] [Related]
14. Methods and datasets for segmentation of minimally invasive surgical instruments in endoscopic images and videos: A review of the state of the art. Rueckert T; Rueckert D; Palm C Comput Biol Med; 2024 Feb; 169():107929. PubMed ID: 38184862 [TBL] [Abstract][Full Text] [Related]
15. An anthropomorphic design for a minimally invasive surgical system based on a survey of surgical technologies, techniques and training. Tzemanaki A; Walters P; Pipe AG; Melhuish C; Dogramadzi S Int J Med Robot; 2014 Sep; 10(3):368-78. PubMed ID: 24127331 [TBL] [Abstract][Full Text] [Related]
16. New remote centre of motion mechanism for robot-assisted minimally invasive surgery. Zhou X; Zhang H; Feng M; Zhao J; Fu Y Biomed Eng Online; 2018 Nov; 17(1):170. PubMed ID: 30453983 [TBL] [Abstract][Full Text] [Related]
17. Image-based laparoscopic tool detection and tracking using convolutional neural networks: a review of the literature. Yang C; Zhao Z; Hu S Comput Assist Surg (Abingdon); 2020 Dec; 25(1):15-28. PubMed ID: 32886540 [TBL] [Abstract][Full Text] [Related]
18. An improved surgical instrument without coupled motions that can be used in robotic-assisted minimally invasive surgery. Mei F; Yili F; Bo P; Xudong Z Proc Inst Mech Eng H; 2012 Aug; 226(8):623-30. PubMed ID: 23057235 [TBL] [Abstract][Full Text] [Related]
19. Robust trocar identification and its application in robotic minimally invasive surgery. Dong L; Morel G Int J Med Robot; 2022 Aug; 18(4):e2392. PubMed ID: 35368139 [TBL] [Abstract][Full Text] [Related]
20. A master manipulator with a remote-center-of-motion kinematic structure for a minimally invasive robotic surgical system. Lee H; Cheon B; Hwang M; Kang D; Kwon DS Int J Med Robot; 2018 Feb; 14(1):. PubMed ID: 29027359 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]