BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 27039278)

  • 1. Relating structure and internalization for ROMP-based protein mimics.
    Backlund CM; Takeuchi T; Futaki S; Tew GN
    Biochim Biophys Acta; 2016 Jul; 1858(7 Pt A):1443-50. PubMed ID: 27039278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal Hydrophobicity in Ring-Opening Metathesis Polymerization-Based Protein Mimics Required for siRNA Internalization.
    deRonde BM; Posey ND; Otter R; Caffrey LM; Minter LM; Tew GN
    Biomacromolecules; 2016 Jun; 17(6):1969-77. PubMed ID: 27103189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased Hydrophobic Block Length of PTDMs Promotes Protein Internalization.
    Backlund CM; Sgolastra F; Otter R; Minter L; Takeuchi T; Futaki S; Tew GN
    Polym Chem; 2016 Dec; 7(48):7514-7521. PubMed ID: 29093759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ROMP- and RAFT-Based Guanidinium-Containing Polymers as Scaffolds for Protein Mimic Synthesis.
    Sarapas JM; Backlund CM; deRonde BM; Minter LM; Tew GN
    Chemistry; 2017 May; 23(28):6858-6863. PubMed ID: 28370636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Primary Mechanism of Cellular Internalization for a Short Cell- Penetrating Peptide as a Nano-Scale Delivery System.
    Liu BR; Huang YW; Korivi M; Lo S-Y; Aronstam RS; Lee H-J
    Curr Pharm Biotechnol; 2017; 18(7):569-584. PubMed ID: 28828981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing Endosomal Escape for Intracellular Delivery of Macromolecular Biologic Therapeutics.
    Lönn P; Kacsinta AD; Cui XS; Hamil AS; Kaulich M; Gogoi K; Dowdy SF
    Sci Rep; 2016 Sep; 6():32301. PubMed ID: 27604151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Importance of sequence specific hydrophobicity in synthetic protein transduction domain mimics.
    Sgolastra F; Minter LM; Osborne BA; Tew GN
    Biomacromolecules; 2014 Mar; 15(3):812-20. PubMed ID: 24506414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cationic PTD/CPP-mediated macromolecular delivery: charging into the cell.
    Lönn P; Dowdy SF
    Expert Opin Drug Deliv; 2015; 12(10):1627-36. PubMed ID: 25994800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of endocytic uptake in transfection efficiency of solid lipid nanoparticles-based nonviral vectors.
    Ruiz de Garibay AP; Solinís Aspiazu MÁ; Rodríguez Gascón A; Ganjian H; Fuchs R
    J Gene Med; 2013; 15(11-12):427-40. PubMed ID: 24339018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Internalization routes of cell-penetrating melanoma antigen peptides into human dendritic cells.
    Buhl T; Braun A; Forkel S; Möbius W; van Werven L; Jahn O; Rezaei-Ghaleh N; Zweckstetter M; Mempel M; Schön MP; Haenssle HA
    Exp Dermatol; 2014 Jan; 23(1):20-6. PubMed ID: 24372650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-Covalent Carrier Hydrophobicity as a Universal Predictor of Intracellular Protein Activity.
    Hango CR; Backlund CM; Davis HC; Posey ND; Minter LM; Tew GN
    Biomacromolecules; 2021 Jul; 22(7):2850-2863. PubMed ID: 34156837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anionic Lipid Content Presents a Barrier to the Activity of ROMP-Based Synthetic Mimics of Protein Transduction Domains (PTDMs).
    Lis M; Dorner F; Tew GN; Lienkamp K
    Langmuir; 2016 Jun; 32(23):5946-54. PubMed ID: 27182683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods to follow intracellular trafficking of cell-penetrating peptides.
    Pärnaste L; Arukuusk P; Zagato E; Braeckmans K; Langel Ü
    J Drug Target; 2016; 24(6):508-19. PubMed ID: 26460120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and characterization of novel protein-derived arginine-rich cell-penetrating peptides.
    Gautam A; Sharma M; Vir P; Chaudhary K; Kapoor P; Kumar R; Nath SK; Raghava GP
    Eur J Pharm Biopharm; 2015 Jan; 89():93-106. PubMed ID: 25459448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of tryptophans on the cellular uptake and membrane interaction of arginine-rich cell penetrating peptides.
    Jobin ML; Blanchet M; Henry S; Chaignepain S; Manigand C; Castano S; Lecomte S; Burlina F; Sagan S; Alves ID
    Biochim Biophys Acta; 2015 Feb; 1848(2):593-602. PubMed ID: 25445669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of endosomolytic reagents by branching of cell-penetrating peptides: tools for the delivery of bioactive compounds to live cells in cis or trans.
    Angeles-Boza AM; Erazo-Oliveras A; Lee YJ; Pellois JP
    Bioconjug Chem; 2010 Dec; 21(12):2164-7. PubMed ID: 21043514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic Protein Mimics for Functional Protein Delivery.
    Tezgel AÖ; Jacobs P; Backlund CM; Telfer JC; Tew GN
    Biomacromolecules; 2017 Mar; 18(3):819-825. PubMed ID: 28165726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macrocyclic cell penetrating peptides: a study of structure-penetration properties.
    Traboulsi H; Larkin H; Bonin MA; Volkov L; Lavoie CL; Marsault É
    Bioconjug Chem; 2015 Mar; 26(3):405-11. PubMed ID: 25654426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Role of Cargo Binding Strength in Polymer-Mediated Intracellular Protein Delivery.
    Posey ND; Hango CR; Minter LM; Tew GN
    Bioconjug Chem; 2018 Aug; 29(8):2679-2690. PubMed ID: 30080401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy-independent intracellular gene delivery mediated by polymeric biomimetics of cell-penetrating peptides.
    Chae SY; Kim HJ; Lee MS; Jang YL; Lee Y; Lee SH; Lee K; Kim SH; Kim HT; Chi SC; Park TG; Jeong JH
    Macromol Biosci; 2011 Sep; 11(9):1169-74. PubMed ID: 21800428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.