These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 27039368)

  • 1. Leaching characteristics of encapsulated controlled low-strength materials containing arsenic-bearing waste precipitates from refractory gold bioleaching.
    Bouzalakos S; Dudeney AW; Chan BK
    J Environ Manage; 2016 Jul; 176():86-100. PubMed ID: 27039368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenic stability in arsenopyrite-rich cemented paste backfills: a leaching test-based assessment.
    Coussy S; Benzaazoua M; Blanc D; Moszkowicz P; Bussière B
    J Hazard Mater; 2011 Jan; 185(2-3):1467-76. PubMed ID: 21074944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ferric minerals and organic matter change arsenic speciation in copper mine tailings.
    Wang P; Liu Y; Menzies NW; Wehr JB; de Jonge MD; Howard DL; Kopittke PM; Huang L
    Environ Pollut; 2016 Nov; 218():835-843. PubMed ID: 27524252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of arsenic content in a complex galena concentrate by Acidithiobacillus ferrooxidans.
    Makita M; Esperón M; Pereyra B; López A; Orrantia E
    BMC Biotechnol; 2004 Oct; 4():22. PubMed ID: 15482595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of arsenic mineralogy and geochemistry in gold mine-impacted matrices: Speciation, transformation, and potential associated risks.
    Wen Q; Yang X; Yan X; Yang L
    J Environ Manage; 2022 Apr; 308():114619. PubMed ID: 35121459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioleaching of arsenic from highly contaminated mine tailings using Acidithiobacillus thiooxidans.
    Lee E; Han Y; Park J; Hong J; Silva RA; Kim S; Kim H
    J Environ Manage; 2015 Jan; 147():124-31. PubMed ID: 25262394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of arsenic immobilization in synthetically prepared cemented paste backfill specimens.
    Coussy S; Benzaazoua M; Blanc D; Moszkowicz P; Bussière B
    J Environ Manage; 2012 Jan; 93(1):10-21. PubMed ID: 22054566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical and mineralogical changes of waste and tailings from the Murgul Cu deposit (Artvin, NE Turkey): implications for occurrence of acid mine drainage.
    Sağlam ES; Akçay M
    Environ Sci Pollut Res Int; 2016 Apr; 23(7):6584-607. PubMed ID: 26637995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of inorganic arsenic species in mine tailings of abandoned mines from Korea.
    Kim MJ; Ahn KH; Jung Y
    Chemosphere; 2002 Oct; 49(3):307-12. PubMed ID: 12363309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and influencing factors of high-performance concrete based on copper tailings for efficient solidification of heavy metals.
    Xie R; Ge R; Li Z; Qu G; Zhang Y; Xu Y; Zeng Y; Li Z
    J Environ Manage; 2023 Jan; 325(Pt B):116469. PubMed ID: 36323112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Curing temperature dependency of the release of arsenic from cemented paste backfill made with Portland cement.
    Bull AJ; Fall M
    J Environ Manage; 2020 Sep; 269():110772. PubMed ID: 32560993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mineralogy and characterization of arsenic, iron, and lead in a mine waste-derived fertilizer.
    Williams AG; Scheckel KG; Tolaymat T; Impellitteri CA
    Environ Sci Technol; 2006 Aug; 40(16):4874-9. PubMed ID: 16955880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mobilisation and bioavailability of arsenic around mesothermal gold deposits in a semiarid environment, Otago, New Zealand.
    Craw D; Pacheco L
    ScientificWorldJournal; 2002 Feb; 2():308-19. PubMed ID: 12806018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing arsenic leachability from pulverized cement concrete produced from arsenic-laden solid CalSiCo-sludge.
    Bhunia P; Pal A; Bandyopadhyay M
    J Hazard Mater; 2007 Mar; 141(3):826-33. PubMed ID: 16938388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water chemistry impacts on arsenic mobilization from arsenopyrite dissolution and secondary mineral precipitation: implications for managed aquifer recharge.
    Neil CW; Yang YJ; Schupp D; Jun YS
    Environ Sci Technol; 2014 Apr; 48(8):4395-405. PubMed ID: 24621369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Structural changes in mineral phases and environmental release behavior of arsenic during sintering of arsenic-containing waste].
    Wang XR; Nong ZX; Wang Q
    Huan Jing Ke Xue; 2012 Dec; 33(12):4412-6. PubMed ID: 23379173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic contaminated site at an abandoned copper smelter plant: waste characterization and solidification/stabilization treatment.
    Shih CJ; Lin CF
    Chemosphere; 2003 Nov; 53(7):691-703. PubMed ID: 13129509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elemental mobility in sulfidic mine tailings reclaimed with paper mill by-products as sealing materials.
    Jia Y; Stahre N; Mäkitalo M; Maurice C; Öhlander B
    Environ Sci Pollut Res Int; 2017 Sep; 24(25):20372-20389. PubMed ID: 28707240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance appraisal of industrial waste incineration bottom ash as controlled low-strength material.
    Razak HA; Naganathan S; Hamid SN
    J Hazard Mater; 2009 Dec; 172(2-3):862-7. PubMed ID: 19665294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geotechnical and leaching properties of flowable fill incorporating waste foundry sand.
    Deng A; Tikalsky PJ
    Waste Manag; 2008 Nov; 28(11):2161-70. PubMed ID: 18082390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.