BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 27039521)

  • 1. Cascade of ecological consequences for West Nile virus transmission when aquatic macrophytes invade stormwater habitats.
    Mackay AJ; Muturi EJ; Ward MP; Allan BF
    Ecol Appl; 2016 Jan; 26(1):219-32. PubMed ID: 27039521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Host selection by Culex pipiens mosquitoes and West Nile virus amplification.
    Hamer GL; Kitron UD; Goldberg TL; Brawn JD; Loss SR; Ruiz MO; Hayes DB; Walker ED
    Am J Trop Med Hyg; 2009 Feb; 80(2):268-78. PubMed ID: 19190226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetric effects of native and exotic invasive shrubs on ecology of the West Nile virus vector Culex pipiens (Diptera: Culicidae).
    Gardner AM; Allan BF; Frisbie LA; Muturi EJ
    Parasit Vectors; 2015 Jun; 8():329. PubMed ID: 26076589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implications of spatial patterns of roosting and movements of American robins for West Nile virus transmission.
    Benson TJ; Ward MP; Lampman RL; Raim A; Weatherhead PJ
    Vector Borne Zoonotic Dis; 2012 Oct; 12(10):877-85. PubMed ID: 22651391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Focal amplification and suppression of West Nile virus transmission associated with communal bird roosts in northern Colorado.
    Komar N; Panella NA; Burkhalter KL
    J Vector Ecol; 2018 Dec; 43(2):220-234. PubMed ID: 30408295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Avian roosting behavior influences vector-host interactions for West Nile virus hosts.
    Janousek WM; Marra PP; Kilpatrick AM
    Parasit Vectors; 2014 Aug; 7():399. PubMed ID: 25167979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. West Nile Virus Activity in a Winter Roost of American Crows (Corvus brachyrhynchos): Is Bird-To-Bird Transmission Important in Persistence and Amplification?
    Hinton MG; Reisen WK; Wheeler SS; Townsend AK
    J Med Entomol; 2015 Jul; 52(4):683-92. PubMed ID: 26335475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epidemiology of West Nile virus in Connecticut: a five-year analysis of mosquito data 1999-2003.
    Andreadis TG; Anderson JF; Vossbrinck CR; Main AJ
    Vector Borne Zoonotic Dis; 2004; 4(4):360-78. PubMed ID: 15682518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Integrative Eco-Epidemiological Analysis of West Nile Virus Transmission.
    Tran A; L'Ambert G; Balança G; Pradier S; Grosbois V; Balenghien T; Baldet T; Lecollinet S; Leblond A; Gaidet-Drapier N
    Ecohealth; 2017 Sep; 14(3):474-489. PubMed ID: 28584951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. West nile virus prevalence across landscapes is mediated by local effects of agriculture on vector and host communities.
    Crowder DW; Dykstra EA; Brauner JM; Duffy A; Reed C; Martin E; Peterson W; Carrière Y; Dutilleul P; Owen JP
    PLoS One; 2013; 8(1):e55006. PubMed ID: 23383032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. West Nile virus host-vector-pathogen interactions in a colonial raptor.
    Soltész Z; Erdélyi K; Bakonyi T; Barna M; Szentpáli-Gavallér K; Solt S; Horváth É; Palatitz P; Kotymán L; Dán Á; Papp L; Harnos A; Fehérvári P
    Parasit Vectors; 2017 Sep; 10(1):449. PubMed ID: 28962629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Avian hosts of West Nile virus in Puerto Rico.
    Komar N; Bessoff K; Diaz A; Amador M; Young G; Seda R; Perez T; Hunsperger E
    Vector Borne Zoonotic Dis; 2012 Jan; 12(1):47-54. PubMed ID: 21923260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overwintering of West Nile Virus in the United States.
    Reisen WK; Wheeler SS
    J Med Entomol; 2019 Oct; 56(6):1498-1507. PubMed ID: 31549726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Avian host and mosquito (Diptera: Culicidae) vector competence determine the efficiency of West Nile and St. Louis encephalitis virus transmission.
    Reisen WK; Fang Y; Martinez VM
    J Med Entomol; 2005 May; 42(3):367-75. PubMed ID: 15962789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The contribution of Culex pipiens complex mosquitoes to transmission and persistence of West Nile virus in North America.
    Andreadis TG
    J Am Mosq Control Assoc; 2012 Dec; 28(4 Suppl):137-51. PubMed ID: 23401954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Land use patterns and the risk of West Nile virus transmission in central Illinois.
    Gardner AM; Lampman RL; Muturi EJ
    Vector Borne Zoonotic Dis; 2014 May; 14(5):338-45. PubMed ID: 24746038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The vector ecology of introduced Culex quinquefasciatus populations, and implications for future risk of West Nile virus emergence in the Galápagos archipelago.
    Eastwood G; Cunningham AA; Kramer LD; Goodman SJ
    Med Vet Entomol; 2019 Mar; 33(1):44-55. PubMed ID: 30168152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The human and animal health impacts of introduction and spread of an exotic strain of West Nile virus in Australia.
    Hernández-Jover M; Roche S; Ward MP
    Prev Vet Med; 2013 May; 109(3-4):186-204. PubMed ID: 23098914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Avian communal roosts as amplification foci for West Nile virus in urban areas in northeastern United States.
    Diuk-Wasser MA; Molaei G; Simpson JE; Folsom-O'Keefe CM; Armstrong PM; Andreadis TG
    Am J Trop Med Hyg; 2010 Feb; 82(2):337-43. PubMed ID: 20134014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. West Nile virus infection rates and avian serology in east-central Illinois.
    Lampman RL; Krasavin NM; Ward MP; Beveroth TA; Lankau EW; Alto BW; Muturi E; Novak RJ
    J Am Mosq Control Assoc; 2013 Jun; 29(2):108-22. PubMed ID: 23923325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.