BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 27039885)

  • 41. [Regeneration capacity of skeletal muscle].
    Wernig A
    Ther Umsch; 2003 Jul; 60(7):383-9. PubMed ID: 12956031
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise?
    Paulsen G; Mikkelsen UR; Raastad T; Peake JM
    Exerc Immunol Rev; 2012; 18():42-97. PubMed ID: 22876722
    [TBL] [Abstract][Full Text] [Related]  

  • 43. mTOR is necessary for proper satellite cell activity and skeletal muscle regeneration.
    Zhang P; Liang X; Shan T; Jiang Q; Deng C; Zheng R; Kuang S
    Biochem Biophys Res Commun; 2015 Jul 17-24; 463(1-2):102-8. PubMed ID: 25998386
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Stem Cell Aging in Skeletal Muscle Regeneration and Disease.
    Yamakawa H; Kusumoto D; Hashimoto H; Yuasa S
    Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32155842
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sarcopenic obesity or obese sarcopenia: A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis.
    Kalinkovich A; Livshits G
    Ageing Res Rev; 2017 May; 35():200-221. PubMed ID: 27702700
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neuromuscular electrical stimulation improves skeletal muscle regeneration through satellite cell fusion with myofibers in healthy elderly subjects.
    Di Filippo ES; Mancinelli R; Marrone M; Doria C; Verratti V; Toniolo L; Dantas JL; Fulle S; Pietrangelo T
    J Appl Physiol (1985); 2017 Sep; 123(3):501-512. PubMed ID: 28572500
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Healthy skeletal muscle aging: The role of satellite cells, somatic mutations and exercise.
    Franco I; Fernandez-Gonzalo R; Vrtačnik P; Lundberg TR; Eriksson M; Gustafsson T
    Int Rev Cell Mol Biol; 2019; 346():157-200. PubMed ID: 31122394
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Aging of the immune system and impaired muscle regeneration: A failure of immunomodulation of adult myogenesis.
    Tidball JG; Flores I; Welc SS; Wehling-Henricks M; Ochi E
    Exp Gerontol; 2021 Mar; 145():111200. PubMed ID: 33359378
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Geroconversion of aged muscle stem cells under regenerative pressure.
    Sousa-Victor P; Perdiguero E; Muñoz-Cánoves P
    Cell Cycle; 2014; 13(20):3183-90. PubMed ID: 25485497
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Muscle stem cells in development, regeneration, and disease.
    Shi X; Garry DJ
    Genes Dev; 2006 Jul; 20(13):1692-708. PubMed ID: 16818602
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Age-related changes in miR-143-3p:Igfbp5 interactions affect muscle regeneration.
    Soriano-Arroquia A; McCormick R; Molloy AP; McArdle A; Goljanek-Whysall K
    Aging Cell; 2016 Apr; 15(2):361-9. PubMed ID: 26762731
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Regulation of skeletal muscle stem cells by fibroblast growth factors.
    Pawlikowski B; Vogler TO; Gadek K; Olwin BB
    Dev Dyn; 2017 May; 246(5):359-367. PubMed ID: 28249356
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Muscle Stem Cell Support Group: Coordinated Cellular Responses in Muscle Regeneration.
    Wosczyna MN; Rando TA
    Dev Cell; 2018 Jul; 46(2):135-143. PubMed ID: 30016618
    [TBL] [Abstract][Full Text] [Related]  

  • 54. miR-378 attenuates muscle regeneration by delaying satellite cell activation and differentiation in mice.
    Zeng P; Han W; Li C; Li H; Zhu D; Zhang Y; Liu X
    Acta Biochim Biophys Sin (Shanghai); 2016 Sep; 48(9):833-9. PubMed ID: 27563005
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Discovery of Novel Small Molecules that Activate Satellite Cell Proliferation and Enhance Repair of Damaged Muscle.
    Billin AN; Bantscheff M; Drewes G; Ghidelli-Disse S; Holt JA; Kramer HF; McDougal AJ; Smalley TL; Wells CI; Zuercher WJ; Henke BR
    ACS Chem Biol; 2016 Feb; 11(2):518-29. PubMed ID: 26696218
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Involvement of phosphatidylserine receptors in the skeletal muscle regeneration: therapeutic implications.
    Szondy Z; Al-Zaeed N; Tarban N; Fige É; Garabuczi É; Sarang Z
    J Cachexia Sarcopenia Muscle; 2022 Aug; 13(4):1961-1973. PubMed ID: 35666022
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effect of muscle loading on skeletal muscle regenerative potential: an update of current research findings relating to aging and neuromuscular pathology.
    Ambrosio F; Kadi F; Lexell J; Fitzgerald GK; Boninger ML; Huard J
    Am J Phys Med Rehabil; 2009 Feb; 88(2):145-55. PubMed ID: 19169178
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Age-dependent alteration in muscle regeneration: the critical role of tissue niche.
    Barberi L; Scicchitano BM; De Rossi M; Bigot A; Duguez S; Wielgosik A; Stewart C; McPhee J; Conte M; Narici M; Franceschi C; Mouly V; Butler-Browne G; Musarò A
    Biogerontology; 2013 Jun; 14(3):273-92. PubMed ID: 23666344
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Muscle regeneration: cellular and molecular events.
    Karalaki M; Fili S; Philippou A; Koutsilieris M
    In Vivo; 2009; 23(5):779-96. PubMed ID: 19779115
    [TBL] [Abstract][Full Text] [Related]  

  • 60. HORSE SPECIES SYMPOSIUM: The aging horse: Effects of inflammation on muscle satellite cells.
    Reed SA; LaVigne EK; Jones AK; Patterson DF; Schauer AL
    J Anim Sci; 2015 Mar; 93(3):862-70. PubMed ID: 25367519
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.