These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 27040079)

  • 1. Sub-5 nm graphene nanopore fabrication by nitrogen ion etching induced by a low-energy electron beam.
    Fox DS; Maguire P; Zhou Y; Rodenburg C; O'Neill A; Coleman JN; Zhang H
    Nanotechnology; 2016 May; 27(19):195302. PubMed ID: 27040079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of electrons on the shape of nanopores prepared by focused electron beam induced etching.
    Liebes Y; Hadad B; Ashkenasy N
    Nanotechnology; 2011 Jul; 22(28):285303. PubMed ID: 21636881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward sensitive graphene nanoribbon-nanopore devices by preventing electron beam-induced damage.
    Puster M; Rodríguez-Manzo JA; Balan A; Drndić M
    ACS Nano; 2013 Dec; 7(12):11283-9. PubMed ID: 24224888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lithography-based fabrication of nanopore arrays in freestanding SiN and graphene membranes.
    Verschueren DV; Yang W; Dekker C
    Nanotechnology; 2018 Apr; 29(14):145302. PubMed ID: 29384130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shrinking solid-state nanopores using electron-beam-induced deposition.
    Kox R; Chen C; Maes G; Lagae L; Borghs G
    Nanotechnology; 2009 Mar; 20(11):115302. PubMed ID: 19420436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Focused electron beam induced etching of silicon using chlorine.
    Roediger P; Hochleitner G; Bertagnolli E; Wanzenboeck HD; Buehler W
    Nanotechnology; 2010 Jul; 21(28):285306. PubMed ID: 20585160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanopore formation by low-energy focused electron beam machining.
    Spinney PS; Howitt DG; Smith RL; Collins SD
    Nanotechnology; 2010 Sep; 21(37):375301. PubMed ID: 20714050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanopore-type black silicon anti-reflection layers fabricated by a one-step silver-assisted chemical etching.
    Lu YT; Barron AR
    Phys Chem Chem Phys; 2013 Jun; 15(24):9862-70. PubMed ID: 23677129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanopore arrays in a silicon membrane for parallel single-molecule detection: fabrication.
    Schmidt T; Zhang M; Sychugov I; Roxhed N; Linnros J
    Nanotechnology; 2015 Aug; 26(31):314001. PubMed ID: 26180043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast and controllable fabrication of suspended graphene nanopore devices.
    Liu S; Zhao Q; Xu J; Yan K; Peng H; Yang F; You L; Yu D
    Nanotechnology; 2012 Mar; 23(8):085301. PubMed ID: 22293107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Focused electron beam induced etching of titanium with XeF2.
    Schoenaker FJ; Córdoba R; Fernández-Pacheco R; Magén C; Stéphan O; Zuriaga-Monroy C; Ibarra MR; De Teresa JM
    Nanotechnology; 2011 Jul; 22(26):265304. PubMed ID: 21586811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective etching of focused gallium ion beam implanted regions from silicon as a nanofabrication method.
    Han Z; Vehkamäki M; Mattinen M; Salmi E; Mizohata K; Leskelä M; Ritala M
    Nanotechnology; 2015 Jul; 26(26):265304. PubMed ID: 26062985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of sub-20 nm nanopore arrays in membranes with embedded metal electrodes at wafer scales.
    Bai J; Wang D; Nam SW; Peng H; Bruce R; Gignac L; Brink M; Kratschmer E; Rossnagel S; Waggoner P; Reuter K; Wang C; Astier Y; Balagurusamy V; Luan B; Kwark Y; Joseph E; Guillorn M; Polonsky S; Royyuru A; Papa Rao S; Stolovitzky G
    Nanoscale; 2014 Aug; 6(15):8900-6. PubMed ID: 24964839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled formation of closed-edge nanopores in graphene.
    He K; Robertson AW; Gong C; Allen CS; Xu Q; Zandbergen H; Grossman JC; Kirkland AI; Warner JH
    Nanoscale; 2015 Jul; 7(27):11602-10. PubMed ID: 26088477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controllable Fabrication of Sub-10 nm Graphene Nanopores via Helium Ion Microscopy and DNA Detection.
    Yuan Z; Lin Y; Hu J; Wang C
    Biosensors (Basel); 2024 Mar; 14(4):. PubMed ID: 38667151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing.
    Ayub M; Ivanov A; Hong J; Kuhn P; Instuli E; Edel JB; Albrecht T
    J Phys Condens Matter; 2010 Nov; 22(45):454128. PubMed ID: 21339614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile and Ultraclean Graphene-on-Glass Nanopores by Controlled Electrochemical Etching.
    Zhang X; van Deursen PMG; Fu W; Schneider GF
    ACS Sens; 2020 Aug; 5(8):2317-2325. PubMed ID: 32573208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymer-free patterning of graphene at sub-10-nm scale by low-energy repetitive electron beam.
    Lan YW; Chang WH; Xiao BT; Liang BW; Chen JH; Jiang PH; Li LJ; Su YW; Zhong YL; Chen CD
    Small; 2014 Nov; 10(22):4778-84. PubMed ID: 25115736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron-beam induced nano-etching of suspended graphene.
    Sommer B; Sonntag J; Ganczarczyk A; Braam D; Prinz G; Lorke A; Geller M
    Sci Rep; 2015 Jan; 5():7781. PubMed ID: 25586495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. XeF(2) gas-assisted focused-electron-beam-induced etching of GaAs with 30 nm resolution.
    Ganczarczyk A; Geller M; Lorke A
    Nanotechnology; 2011 Jan; 22(4):045301. PubMed ID: 21157014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.