BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 27040083)

  • 21. The first antimicrobial peptide from sea amphibian.
    Lu Y; Ma Y; Wang X; Liang J; Zhang C; Zhang K; Lin G; Lai R
    Mol Immunol; 2008 Feb; 45(3):678-81. PubMed ID: 17707909
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiple major histocompatibility complex class I genes in Asian anurans: Ontogeny and phylogeny.
    Didinger C; Eimes JA; Lillie M; Waldman B
    Dev Comp Immunol; 2017 May; 70():69-79. PubMed ID: 28027939
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Water adaptation strategy in anuran amphibians: molecular diversity of aquaporin.
    Ogushi Y; Akabane G; Hasegawa T; Mochida H; Matsuda M; Suzuki M; Tanaka S
    Endocrinology; 2010 Jan; 151(1):165-73. PubMed ID: 19854867
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proteomic analysis of the skin from Chinese fire-bellied newt and comparison to Chinese giant salamander.
    Sun J; Geng X; Guo J; Zang X; Li P; Li D; Xu C
    Comp Biochem Physiol Part D Genomics Proteomics; 2016 Sep; 19():71-77. PubMed ID: 27343457
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic signals of high-altitude adaptation in amphibians: a comparative transcriptome analysis.
    Yang W; Qi Y; Fu J
    BMC Genet; 2016 Oct; 17(1):134. PubMed ID: 27716028
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcriptome analysis and identification of genes related to immune function in skin of the Chinese brown frog.
    Zhang Z; Zhang B; Nie X; Liu Q; Xie F; Shang D
    Zoolog Sci; 2009 Jan; 26(1):80-6. PubMed ID: 19267615
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A combined mass spectrometric and cDNA sequencing approach to the isolation and characterization of novel antimicrobial peptides from the skin secretions of Phyllomedusa hypochondrialis azurea.
    Thompson AH; Bjourson AJ; Orr DF; Shaw C; McClean S
    Peptides; 2007 Jul; 28(7):1331-43. PubMed ID: 17553595
    [TBL] [Abstract][Full Text] [Related]  

  • 28. De novo transcriptome sequencing and analysis of Coccinella septempunctata L. in non-diapause, diapause and diapause-terminated states to identify diapause-associated genes.
    Qi X; Zhang L; Han Y; Ren X; Huang J; Chen H
    BMC Genomics; 2015 Dec; 16():1086. PubMed ID: 26689283
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combined peptidomics and genomics approach to the isolation of amphibian antimicrobial peptides.
    Lai R
    Methods Mol Biol; 2010; 615():177-90. PubMed ID: 20013209
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence for convergent evolution in the antimicrobial peptide system in anuran amphibians.
    König E; Bininda-Emonds OR
    Peptides; 2011 Jan; 32(1):20-5. PubMed ID: 20955747
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cloning from tissue surrogates: antimicrobial peptide (esculentin) cDNAs from the defensive skin secretions of Chinese ranid frogs.
    Chen T; Zhou M; Chen W; Lorimer J; Rao P; Walker B; Shaw C
    Genomics; 2006 May; 87(5):638-44. PubMed ID: 16427248
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of amphibian antimicrobial peptides in protection of amphibians from pathogens linked to global amphibian declines.
    Rollins-Smith LA
    Biochim Biophys Acta; 2009 Aug; 1788(8):1593-9. PubMed ID: 19327341
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cloning and expression of genes enocoding antimicrobial peptides and bradykinin from the skin and brain of Oki Tago's brown frog, Rana tagoi okiensis.
    Tazato S; Conlon JM; Iwamuro S
    Peptides; 2010 Aug; 31(8):1480-7. PubMed ID: 20457198
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biological characterization and modes of action of temporins and bombinins H, multiple forms of short and mildly cationic anti-microbial peptides from amphibian skin.
    Mangoni ML; Marcellini HG; Simmaco M
    J Pept Sci; 2007 Sep; 13(9):603-13. PubMed ID: 17602439
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Antimicrobial peptides and alytesin are co-secreted from the venom of the Midwife toad, Alytes maurus (Alytidae, Anura): implications for the evolution of frog skin defensive secretions.
    König E; Zhou M; Wang L; Chen T; Bininda-Emonds OR; Shaw C
    Toxicon; 2012 Nov; 60(6):967-81. PubMed ID: 22800568
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A computational approach for peptidomic analysis in taxonomic study of amphibian species.
    Zheng H; Ojha PC; McClean S; Graham C; Black ND; Hughes JG; Shaw C
    IEEE Trans Nanobioscience; 2005 Sep; 4(3):241-7. PubMed ID: 16220688
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcriptome profiling and digital gene expression by deep sequencing in early somatic embryogenesis of endangered medicinal Eleutherococcus senticosus Maxim.
    Tao L; Zhao Y; Wu Y; Wang Q; Yuan H; Zhao L; Guo W; You X
    Gene; 2016 Mar; 578(1):17-24. PubMed ID: 26657036
    [TBL] [Abstract][Full Text] [Related]  

  • 38.
    Liedtke HC; Garrido JG; Esteve-Codina A; Gut M; Alioto T; Gomez-Mestre I
    G3 (Bethesda); 2019 Aug; 9(8):2647-2655. PubMed ID: 31217263
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Different expression profiles of bioactive peptides in Pelophylax nigromaculatus from distinct regions.
    Song Y; Ji S; Liu W; Yu X; Meng Q; Lai R
    Biosci Biotechnol Biochem; 2013; 77(5):1075-9. PubMed ID: 23649276
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular cloning and characterization of ligand- and species-specificity of amphibian estrogen receptors.
    Katsu Y; Taniguchi E; Urushitani H; Miyagawa S; Takase M; Kubokawa K; Tooi O; Oka T; Santo N; Myburgh J; Matsuno A; Iguchi T
    Gen Comp Endocrinol; 2010 Sep; 168(2):220-30. PubMed ID: 20064516
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.