These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 27040091)

  • 1. Combined oxidative leaching and electrowinning process for mercury recovery from spent fluorescent lamps.
    Ozgur C; Coskun S; Akcil A; Beyhan M; Üncü IS; Civelekoglu G
    Waste Manag; 2016 Nov; 57():215-219. PubMed ID: 27040091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recycling oriented comparison of mercury distribution in new and spent fluorescent lamps and their potential risk.
    Hobohm J; Krüger O; Basu S; Kuchta K; van Wasen S; Adam C
    Chemosphere; 2017 Feb; 169():618-626. PubMed ID: 27912186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of retorted phosphor powder from spent fluorescent lamps by thermal process.
    Park HS; Rhee SW
    Waste Manag; 2016 Apr; 50():257-63. PubMed ID: 26882866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detoxification of mercury pollutant leached from spent fluorescent lamps using bacterial strains.
    Al-Ghouti MA; Abuqaoud RH; Abu-Dieyeh MH
    Waste Manag; 2016 Mar; 49():238-244. PubMed ID: 26725036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mercury reduction studies to facilitate the thermal decontamination of phosphor powder residues from spent fluorescent lamps.
    Durão WA; de Castro CA; Windmöller CC
    Waste Manag; 2008 Nov; 28(11):2311-9. PubMed ID: 18096377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treatment of exhaust fluorescent lamps to recover yttrium: experimental and process analyses.
    De Michelis I; Ferella F; Varelli EF; Vegliò F
    Waste Manag; 2011 Dec; 31(12):2559-68. PubMed ID: 21840197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl).
    Guo Y; Li F; Zhu H; Li G; Huang J; He W
    Waste Manag; 2016 May; 51():227-233. PubMed ID: 26674969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and recovery of mercury from spent fluorescent lamps.
    Jang M; Hong SM; Park JK
    Waste Manag; 2005; 25(1):5-14. PubMed ID: 15681174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries in citric acid media.
    Chen X; Zhou T
    Waste Manag Res; 2014 Nov; 32(11):1083-93. PubMed ID: 25378255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mercury risk from fluorescent lamps in China: current status and future perspective.
    Hu Y; Cheng H
    Environ Int; 2012 Sep; 44():141-50. PubMed ID: 22321538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigations regarding the wet decontamination of fluorescent lamp waste using iodine in potassium iodide solutions.
    Tunsu C; Ekberg C; Foreman M; Retegan T
    Waste Manag; 2015 Feb; 36():289-96. PubMed ID: 25443097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical process for electrode material of spent lithium ion batteries.
    Prabaharan G; Barik SP; Kumar N; Kumar L
    Waste Manag; 2017 Oct; 68():527-533. PubMed ID: 28711181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries.
    Li L; Ge J; Chen R; Wu F; Chen S; Zhang X
    Waste Manag; 2010 Dec; 30(12):2615-21. PubMed ID: 20817431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper recovery and gold enrichment from waste printed circuit boards by mediated electrochemical oxidation.
    Fogarasi S; Imre-Lucaci F; Imre-Lucaci A; Ilea P
    J Hazard Mater; 2014 May; 273():215-21. PubMed ID: 24747374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mercury Pollution, Treatment and Solutions in Spent Fluorescent Lamps in Mainland China.
    Li Z; Jia P; Zhao F; Kang Y
    Int J Environ Res Public Health; 2018 Dec; 15(12):. PubMed ID: 30720797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Life-cycle flow of mercury and recycling scenario of fluorescent lamps in Japan.
    Asari M; Fukui K; Sakai S
    Sci Total Environ; 2008 Apr; 393(1):1-10. PubMed ID: 18237763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of mercury bonded in residual glass from spent fluorescent lamps.
    Rey-Raap N; Gallardo A
    J Environ Manage; 2013 Jan; 115():175-8. PubMed ID: 23262405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hydrometallurgical process for the recovery of terbium from fluorescent lamps: Experimental design, optimization of acid leaching process and process analysis.
    Innocenzi V; Ippolito NM; De Michelis I; Medici F; Vegliò F
    J Environ Manage; 2016 Dec; 184(Pt 3):552-559. PubMed ID: 27789090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A sustainable process for the recovery of valuable metals from spent lithium-ion batteries.
    Fan B; Chen X; Zhou T; Zhang J; Xu B
    Waste Manag Res; 2016 May; 34(5):474-81. PubMed ID: 26951340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the work environment in the fluorescent lamp recycling sector by optimizing mercury elimination.
    Lecler MT; Zimmermann F; Silvente E; Masson A; Morèle Y; Remy A; Chollot A
    Waste Manag; 2018 Jun; 76():250-260. PubMed ID: 29496382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.