BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 27040194)

  • 1. A new biocompatible nanocomposite as a promising constituent of sunscreens.
    Amin RM; Elfeky SA; Verwanger T; Krammer B
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():46-51. PubMed ID: 27040194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A promising protected ascorbic acid-hydroxyapatite nanocomposite as a skin anti-ager: A detailed photo-and thermal stability study.
    Sliem MA; Karas RA; Harith MA
    J Photochem Photobiol B; 2017 Aug; 173():661-671. PubMed ID: 28711840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications.
    Grande CJ; Torres FG; Gomez CM; Bañó MC
    Acta Biomater; 2009 Jun; 5(5):1605-15. PubMed ID: 19246264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of hydroxyapatite/gelatin nanocomposite using polyacrylamide.
    Chang MC; Kim UK; Douglas WH
    J Biomater Sci Polym Ed; 2009; 20(3):363-75. PubMed ID: 19192361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytolatex synthesized gold nanoparticles as novel agent to enhance sun protection factor of commercial sunscreens.
    Borase HP; Patil CD; Salunkhe RB; Suryawanshi RK; Salunke BK; Patil SV
    Int J Cosmet Sci; 2014 Dec; 36(6):571-8. PubMed ID: 25124731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controllable synthesis and characterization of porous polyvinyl alcohol/hydroxyapatite nanocomposite scaffolds via an in situ colloidal technique.
    Poursamar SA; Azami M; Mozafari M
    Colloids Surf B Biointerfaces; 2011 Jun; 84(2):310-6. PubMed ID: 21310596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroxyapatite-TiO(2)-based nanocomposites synthesized in supercritical CO(2) for bone tissue engineering: physical and mechanical properties.
    Salarian M; Xu WZ; Wang Z; Sham TK; Charpentier PA
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16918-31. PubMed ID: 25184699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of wool keratin/hydroxyapatite nanocomposite.
    Li J; Liu X; Zhang J; Zhang Y; Han Y; Hu J; Li Y
    J Biomed Mater Res B Appl Biomater; 2012 May; 100(4):896-902. PubMed ID: 22438339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural properties of silver doped hydroxyapatite and their biocompatibility.
    Ciobanu CS; Iconaru SL; Pasuk I; Vasile BS; Lupu AR; Hermenean A; Dinischiotu A; Predoi D
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1395-402. PubMed ID: 23827587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UV irradiation-induced zinc dissociation from commercial zinc oxide sunscreen and its action in human epidermal keratinocytes.
    Martorano LM; Stork CJ; Li YV
    J Cosmet Dermatol; 2010 Dec; 9(4):276-86. PubMed ID: 21122045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ceria-containing uncoated and coated hydroxyapatite-based galantamine nanocomposites for formidable treatment of Alzheimer's disease in ovariectomized albino-rat model.
    Wahba SM; Darwish AS; Kamal SM
    Mater Sci Eng C Mater Biol Appl; 2016 Aug; 65():151-63. PubMed ID: 27157738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatible ι-carrageenan-γ-maghemite nanocomposite for biomedical applications - synthesis, characterization and in vitro anticancer efficacy.
    Raman M; Devi V; Doble M
    J Nanobiotechnology; 2015 Mar; 13():18. PubMed ID: 25890231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Enhancement of endogenous antioxidant defenses: a promising strategy for prevention of skin cancers].
    Béani JC
    Bull Acad Natl Med; 2001; 185(8):1507-25; discussion 1526-7. PubMed ID: 11974970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. UV surface modification of a new nanocomposite polymer to improve cytocompatibility.
    Olbrich M; Punshon G; Frischauf I; Salacinski HJ; Rebollar E; Romanin C; Seifalian AM; Heitz J
    J Biomater Sci Polym Ed; 2007; 18(4):453-68. PubMed ID: 17540119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium phosphate formation in gelatin matrix using free ion precursors of Ca2+ and phosphate ions.
    Chang MC; DeLong R
    Dent Mater; 2009 Feb; 25(2):261-8. PubMed ID: 18760464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RGD-bearing peptide-amphiphile-hydroxyapatite nanocomposite bone scaffold: an in vitro study.
    Çakmak S; Çakmak AS; Gümüşderelioğlu M
    Biomed Mater; 2013 Aug; 8(4):045014. PubMed ID: 23860136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of bioactive hydroxyapatite-calcite nanocomposite for biomedical applications.
    Kumar GS; Girija EK; Thamizhavel A; Yokogawa Y; Kalkura SN
    J Colloid Interface Sci; 2010 Sep; 349(1):56-62. PubMed ID: 20541216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physicochemical characterization and in vivo evaluation of triamcinolone acetonide-loaded hydroxyapatite nanocomposites for treatment of rheumatoid arthritis.
    Jafari S; Maleki-Dizaji N; Barar J; Barzegar-Jalali M; Rameshrad M; Adibkia K
    Colloids Surf B Biointerfaces; 2016 Apr; 140():223-232. PubMed ID: 26764105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering.
    Zhang Y; Venugopal JR; El-Turki A; Ramakrishna S; Su B; Lim CT
    Biomaterials; 2008 Nov; 29(32):4314-22. PubMed ID: 18715637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon nanotube-reinforced hydroxyapatite composite and their interaction with human osteoblast in vitro.
    Khalid P; Hussain MA; Rekha PD; Arun AB
    Hum Exp Toxicol; 2015 May; 34(5):548-56. PubMed ID: 25233896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.