BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 27040237)

  • 1. Murine osteoblastic and osteoclastic differentiation on strontium releasing hydroxyapatite forming cements.
    Singh SS; Roy A; Lee B; Parekh S; Kumta PN
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():429-38. PubMed ID: 27040237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strontium-Substituted Hydroxyapatite-Gelatin Biomimetic Scaffolds Modulate Bone Cell Response.
    Panzavolta S; Torricelli P; Casolari S; Parrilli A; Fini M; Bigi A
    Macromol Biosci; 2018 Jul; 18(7):e1800096. PubMed ID: 29877029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of Sr-doped hydroxyapatite nanocrystals with osteoclast and osteoblast-like cells.
    Capuccini C; Torricelli P; Boanini E; Gazzano M; Giardino R; Bigi A
    J Biomed Mater Res A; 2009 Jun; 89(3):594-600. PubMed ID: 18437694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sr-containing hydroxyapatite: morphologies of HA crystals and bioactivity on osteoblast cells.
    Aina V; Bergandi L; Lusvardi G; Malavasi G; Imrie FE; Gibson IR; Cerrato G; Ghigo D
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1132-42. PubMed ID: 23827552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cross-talk between osteoclasts and osteoblasts in response to strontium treatment: involvement of osteoprotegerin.
    Peng S; Liu XS; Huang S; Li Z; Pan H; Zhen W; Luk KD; Guo XE; Lu WW
    Bone; 2011 Dec; 49(6):1290-8. PubMed ID: 21925296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of strontium substitution on the material properties and osteogenic potential of 3D powder printed magnesium phosphate scaffolds.
    Meininger S; Moseke C; Spatz K; März E; Blum C; Ewald A; Vorndran E
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():1145-1158. PubMed ID: 30812998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strontium substitution in apatitic CaP cements effectively attenuates osteoclastic resorption but does not inhibit osteoclastogenesis.
    Schumacher M; Wagner AS; Kokesch-Himmelreich J; Bernhardt A; Rohnke M; Wenisch S; Gelinsky M
    Acta Biomater; 2016 Jun; 37():184-94. PubMed ID: 27084107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strontium-substituted calcium sulfate hemihydrate/hydroxyapatite scaffold enhances bone regeneration by recruiting bone mesenchymal stromal cells.
    Chang H; Xiang H; Yao Z; Yang S; Tu M; Zhang X; Yu B
    J Biomater Appl; 2020 Jul; 35(1):97-107. PubMed ID: 32233720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a strontium-containing hydroxyapatite bone cement.
    Guo D; Xu K; Zhao X; Han Y
    Biomaterials; 2005 Jul; 26(19):4073-83. PubMed ID: 15664634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strontium-substituted hydroxyapatite coatings synthesized by pulsed-laser deposition: in vitro osteoblast and osteoclast response.
    Capuccini C; Torricelli P; Sima F; Boanini E; Ristoscu C; Bracci B; Socol G; Fini M; Mihailescu IN; Bigi A
    Acta Biomater; 2008 Nov; 4(6):1885-93. PubMed ID: 18554996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gradient coatings of strontium hydroxyapatite/zinc β-tricalcium phosphate as a tool to modulate osteoblast/osteoclast response.
    Boanini E; Torricelli P; Sima F; Axente E; Fini M; Mihailescu IN; Bigi A
    J Inorg Biochem; 2018 Jun; 183():1-8. PubMed ID: 29525694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of inorganic additives to calcium phosphate on in vitro behavior of osteoblasts and osteoclasts.
    Yang L; Perez-Amodio S; Barrère-de Groot FY; Everts V; van Blitterswijk CA; Habibovic P
    Biomaterials; 2010 Apr; 31(11):2976-89. PubMed ID: 20122718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strontium-incorporated mineralized PLLA nanofibrous membranes for promoting bone defect repair.
    Han X; Zhou X; Qiu K; Feng W; Mo H; Wang M; Wang J; He C
    Colloids Surf B Biointerfaces; 2019 Jul; 179():363-373. PubMed ID: 30999115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro osteogenesis by intracellular uptake of strontium containing bioactive glass nanoparticles.
    Naruphontjirakul P; Porter AE; Jones JR
    Acta Biomater; 2018 Jan; 66():67-80. PubMed ID: 29129790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of Sr-incorporated biphasic calcium phosphate bone cement.
    Zhu H; Guo D; Qi W; Xu K
    Biomed Mater; 2017 Jan; 12(1):015016. PubMed ID: 28094246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteogenesis effects of strontium-substituted hydroxyapatite coatings on true bone ceramic surfaces in vitro and in vivo.
    Li J; Yang L; Guo X; Cui W; Yang S; Wang J; Qu Y; Shao Z; Xu S
    Biomed Mater; 2017 Dec; 13(1):015018. PubMed ID: 28862155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteogenesis of rat mesenchymal stem cells and osteoblastic cells on strontium-doped nanohydroxyapatite-coated titanium surfaces.
    Jiang QH; Gong X; Wang XX; He FM
    Int J Oral Maxillofac Implants; 2015; 30(2):461-71. PubMed ID: 25830407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strontium-substituted hydroxyapatite stimulates osteogenesis on poly(propylene fumarate) nanocomposite scaffolds.
    Li J; Liu X; Park S; Miller AL; Terzic A; Lu L
    J Biomed Mater Res A; 2019 Mar; 107(3):631-642. PubMed ID: 30422387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel strontium(II)-modified calcium phosphate bone cement stimulates human-bone-marrow-derived mesenchymal stem cell proliferation and osteogenic differentiation in vitro.
    Schumacher M; Lode A; Helth A; Gelinsky M
    Acta Biomater; 2013 Dec; 9(12):9547-57. PubMed ID: 23917042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic strontium substitution in hydroxyapatite coatings on titanium via micro-arc treatment and their osteoblast/osteoclast responses.
    Chung CJ; Long HY
    Acta Biomater; 2011 Nov; 7(11):4081-7. PubMed ID: 21784178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.