These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 27040238)

  • 1. Pullulan microcarriers for bone tissue regeneration.
    Aydogdu H; Keskin D; Baran ET; Tezcaner A
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():439-49. PubMed ID: 27040238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel fluoridated silk fibroin/ TiO
    Johari N; Madaah Hosseini HR; Samadikuchaksaraei A
    Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():265-276. PubMed ID: 29025657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crosslinked pullulan/cellulose acetate fibrous scaffolds for bone tissue engineering.
    Atila D; Keskin D; Tezcaner A
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():1103-15. PubMed ID: 27612808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors influencing the deposition of hydroxyapatite coating onto hollow glass microspheres.
    Jiao Y; Xiao GY; Xu WH; Zhu RF; Lu YP
    Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2744-51. PubMed ID: 23623091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and in vitro characterization of electrospun PVA scaffolds coated with bioactive glass for bone regeneration.
    Gao C; Gao Q; Li Y; Rahaman MN; Teramoto A; Abe K
    J Biomed Mater Res A; 2012 May; 100(5):1324-34. PubMed ID: 22374712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of cross-linking on the physicochemical and in vitro properties of pullulan/dextran microbeads.
    Lanouar S; Aid-Launais R; Oliveira A; Bidault L; Closs B; Labour MN; Letourneur D
    J Mater Sci Mater Med; 2018 May; 29(6):77. PubMed ID: 29845352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering.
    Paşcu EI; Stokes J; McGuinness GB
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4905-16. PubMed ID: 24094204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid biomimetic mineralization of hydroxyapatite-g-PDLLA hybrid microspheres.
    Du K; Shi X; Gan Z
    Langmuir; 2013 Dec; 29(49):15293-301. PubMed ID: 24236612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatically crosslinked and mechanically tunable silk fibroin/pullulan hydrogels for mesenchymal stem cells delivery.
    Li T; Song X; Weng C; Wang X; Wu J; Sun L; Gong X; Zeng WN; Yang L; Chen C
    Int J Biol Macromol; 2018 Aug; 115():300-307. PubMed ID: 29665386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CaSiO₃ microstructure modulating the in vitro and in vivo bioactivity of poly(lactide-co-glycolide) microspheres.
    Wu C; Zhang Y; Fan W; Ke X; Hu X; Zhou Y; Xiao Y
    J Biomed Mater Res A; 2011 Jul; 98(1):122-31. PubMed ID: 21548064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of Innovative Silk/Alginate Microcarriers for Mesenchymal Stem Cell Delivery and Tissue Regeneration.
    Perteghella S; Martella E; de Girolamo L; Perucca Orfei C; Pierini M; Fumagalli V; Pintacuda DV; Chlapanidas T; Viganò M; Faragò S; Torre ML; Lucarelli E
    Int J Mol Sci; 2017 Aug; 18(9):. PubMed ID: 28832547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytocompatibility of a silk fibroin tubular scaffold.
    Wang J; Wei Y; Yi H; Liu Z; Sun D; Zhao H
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():429-36. PubMed ID: 24268279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleation of hydroxyapatite on Antheraea pernyi (A. pernyi) silk fibroin film.
    Yang M; Shuai Y; Zhou G; Mandal N; Zhu L
    Biomed Mater Eng; 2014; 24(1):731-40. PubMed ID: 24211958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of poly(ε-caprolactone) surface properties for apatite formation and improved osteogenic stimulation.
    Choong C; Yuan S; Thian ES; Oyane A; Triffitt J
    J Biomed Mater Res A; 2012 Feb; 100(2):353-61. PubMed ID: 22065559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of preparation methods on the bone formation potential of apatite-coated chitosan microspheres.
    Xu F; Ding H; Song F; Wang J
    J Biomater Sci Polym Ed; 2014; 25(18):2080-93. PubMed ID: 25324120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration.
    Oliveira Barud HG; Barud Hda S; Cavicchioli M; do Amaral TS; de Oliveira Junior OB; Santos DM; Petersen AL; Celes F; Borges VM; de Oliveira CI; de Oliveira PF; Furtado RA; Tavares DC; Ribeiro SJ
    Carbohydr Polym; 2015 Sep; 128():41-51. PubMed ID: 26005138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expansion and delivery of adipose-derived mesenchymal stem cells on three microcarriers for soft tissue regeneration.
    Zhou Y; Yan Z; Zhang H; Lu W; Liu S; Huang X; Luo H; Jin Y
    Tissue Eng Part A; 2011 Dec; 17(23-24):2981-97. PubMed ID: 21875329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-functional P(3HB) microsphere/45S5 Bioglass-based composite scaffolds for bone tissue engineering.
    Francis L; Meng D; Knowles JC; Roy I; Boccaccini AR
    Acta Biomater; 2010 Jul; 6(7):2773-86. PubMed ID: 20056174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioactive hydrogel-nanosilica hybrid materials: a potential injectable scaffold for bone tissue engineering.
    Lewandowska-Łańcucka J; Fiejdasz S; Rodzik Ł; Kozieł M; Nowakowska M
    Biomed Mater; 2015 Feb; 10(1):015020. PubMed ID: 25668107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bio-inspired mineralization of hydroxyapatite in 3D silk fibroin hydrogel for bone tissue engineering.
    Jin Y; Kundu B; Cai Y; Kundu SC; Yao J
    Colloids Surf B Biointerfaces; 2015 Oct; 134():339-45. PubMed ID: 26209967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.