These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 27040246)
1. Bio-safe processing of polylactic-co-caprolactone and polylactic acid blends to fabricate fibrous porous scaffolds for in vitro mesenchymal stem cells adhesion and proliferation. Salerno A; Guarino V; Oliviero O; Ambrosio L; Domingo C Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():512-21. PubMed ID: 27040246 [TBL] [Abstract][Full Text] [Related]
2. The first systematic analysis of 3D rapid prototyped poly(ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability. Domingos M; Intranuovo F; Russo T; De Santis R; Gloria A; Ambrosio L; Ciurana J; Bartolo P Biofabrication; 2013 Dec; 5(4):045004. PubMed ID: 24192056 [TBL] [Abstract][Full Text] [Related]
3. Amniotic epithelial stem cell biocompatibility for electrospun poly(lactide-co-glycolide), poly(ε-caprolactone), poly(lactic acid) scaffolds. Russo V; Tammaro L; Di Marcantonio L; Sorrentino A; Ancora M; Valbonetti L; Turriani M; Martelli A; Cammà C; Barboni B Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():321-9. PubMed ID: 27612719 [TBL] [Abstract][Full Text] [Related]
4. In vitro and animal study of novel nano-hydroxyapatite/poly(epsilon-caprolactone) composite scaffolds fabricated by layer manufacturing process. Heo SJ; Kim SE; Wei J; Kim DH; Hyun YT; Yun HS; Kim HK; Yoon TR; Kim SH; Park SA; Shin JW; Shin JW Tissue Eng Part A; 2009 May; 15(5):977-89. PubMed ID: 18803480 [TBL] [Abstract][Full Text] [Related]
5. In vitro chondrocyte behavior on porous biodegradable poly(e-caprolactone)/polyglycolic acid scaffolds for articular chondrocyte adhesion and proliferation. Jonnalagadda JB; Rivero IV; Dertien JS J Biomater Sci Polym Ed; 2015; 26(7):401-19. PubMed ID: 25671317 [TBL] [Abstract][Full Text] [Related]
7. Physicochemical characterization and biocompatibility in vitro of biphasic calcium phosphate/polyvinyl alcohol scaffolds prepared by freeze-drying method for bone tissue engineering applications. Nie L; Chen D; Suo J; Zou P; Feng S; Yang Q; Yang S; Ye S Colloids Surf B Biointerfaces; 2012 Dec; 100():169-76. PubMed ID: 22766294 [TBL] [Abstract][Full Text] [Related]
8. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique]. Lian Q; Zhuang P; Li C; Jin Z; Li D Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010 [TBL] [Abstract][Full Text] [Related]
9. Polymer scaffolds with no skin-effect for tissue engineering applications fabricated by thermally induced phase separation. Kasoju N; Kubies D; Sedlačík T; Janoušková O; Koubková J; Kumorek MM; Rypáček F Biomed Mater; 2016 Jan; 11(1):015002. PubMed ID: 26752658 [TBL] [Abstract][Full Text] [Related]
10. Proliferative and Differentiation Potential of Multipotent Mesenchymal Stem Cells Cultured on Biocompatible Polymer Scaffolds with Various Physicochemical Characteristics. Rodina AV; Tenchurin TK; Saprykin VP; Shepelev AD; Mamagulashvili VG; Grigor'ev TE; Moskaleva EY; Chvalun SN; Severin SE Bull Exp Biol Med; 2017 Feb; 162(4):488-495. PubMed ID: 28243915 [TBL] [Abstract][Full Text] [Related]
11. Modified PHBV scaffolds by in situ UV polymerization: structural characteristic, mechanical properties and bone mesenchymal stem cell compatibility. Ke Y; Wang YJ; Ren L; Zhao QC; Huang W Acta Biomater; 2010 Apr; 6(4):1329-36. PubMed ID: 19853067 [TBL] [Abstract][Full Text] [Related]
12. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017 [TBL] [Abstract][Full Text] [Related]
13. Optimization and evaluation of silk fibroin-chitosan freeze-dried porous scaffolds for cartilage tissue engineering application. Vishwanath V; Pramanik K; Biswas A J Biomater Sci Polym Ed; 2016; 27(7):657-74. PubMed ID: 26830046 [TBL] [Abstract][Full Text] [Related]
14. Porogen-induced surface modification of nano-fibrous poly(L-lactic acid) scaffolds for tissue engineering. Liu X; Won Y; Ma PX Biomaterials; 2006 Jul; 27(21):3980-7. PubMed ID: 16580063 [TBL] [Abstract][Full Text] [Related]
15. Comparison between PCL/hydroxyapatite (HA) and PCL/halloysite nanotube (HNT) composite scaffolds prepared by co-extrusion and gas foaming. Jing X; Mi HY; Turng LS Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():53-61. PubMed ID: 28024618 [TBL] [Abstract][Full Text] [Related]
16. Hierarchically porous structure, mechanical strength and cell biological behaviors of calcium phosphate composite scaffolds prepared by combination of extrusion and porogen burnout technique and enhanced by gelatin. Feng S; He F; Ye J Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():217-224. PubMed ID: 29025651 [TBL] [Abstract][Full Text] [Related]
17. A combined compression molding, heating, and leaching process for fabrication of micro-porous poly(ε-caprolactone) scaffolds. Sempertegui ND; Narkhede AA; Thomas V; Rao SS J Biomater Sci Polym Ed; 2018 Nov; 29(16):1978-1993. PubMed ID: 30220215 [TBL] [Abstract][Full Text] [Related]
18. Modular polylactic acid microparticle-based scaffolds prepared via microfluidic emulsion/solvent displacement process: fabrication, characterization, and in vitro mesenchymal stem cells interaction study. Salerno A; Levato R; Mateos-Timoneda MA; Engel E; Netti PA; Planell JA J Biomed Mater Res A; 2013 Mar; 101(3):720-32. PubMed ID: 22941938 [TBL] [Abstract][Full Text] [Related]
19. Low-pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering. Chung EJ; Sugimoto M; Koh JL; Ameer GA Tissue Eng Part C Methods; 2012 Feb; 18(2):113-21. PubMed ID: 21933018 [TBL] [Abstract][Full Text] [Related]
20. Effect of topology of poly(L-lactide-co-ε-caprolactone) scaffolds on the response of cultured human umbilical cord Wharton's jelly-derived mesenchymal stem cells and neuroblastoma cell lines. Thapsukhon B; Daranarong D; Meepowpan P; Suree N; Molloy R; Inthanon K; Wongkham W; Punyodom W J Biomater Sci Polym Ed; 2014 Jul; 25(10):1028-44. PubMed ID: 24856087 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]