BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 27040246)

  • 1. Bio-safe processing of polylactic-co-caprolactone and polylactic acid blends to fabricate fibrous porous scaffolds for in vitro mesenchymal stem cells adhesion and proliferation.
    Salerno A; Guarino V; Oliviero O; Ambrosio L; Domingo C
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():512-21. PubMed ID: 27040246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The first systematic analysis of 3D rapid prototyped poly(ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability.
    Domingos M; Intranuovo F; Russo T; De Santis R; Gloria A; Ambrosio L; Ciurana J; Bartolo P
    Biofabrication; 2013 Dec; 5(4):045004. PubMed ID: 24192056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro and animal study of novel nano-hydroxyapatite/poly(epsilon-caprolactone) composite scaffolds fabricated by layer manufacturing process.
    Heo SJ; Kim SE; Wei J; Kim DH; Hyun YT; Yun HS; Kim HK; Yoon TR; Kim SH; Park SA; Shin JW; Shin JW
    Tissue Eng Part A; 2009 May; 15(5):977-89. PubMed ID: 18803480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro chondrocyte behavior on porous biodegradable poly(e-caprolactone)/polyglycolic acid scaffolds for articular chondrocyte adhesion and proliferation.
    Jonnalagadda JB; Rivero IV; Dertien JS
    J Biomater Sci Polym Ed; 2015; 26(7):401-19. PubMed ID: 25671317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution PLA-based composite scaffolds via 3-D printing technology.
    Serra T; Planell JA; Navarro M
    Acta Biomater; 2013 Mar; 9(3):5521-30. PubMed ID: 23142224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physicochemical characterization and biocompatibility in vitro of biphasic calcium phosphate/polyvinyl alcohol scaffolds prepared by freeze-drying method for bone tissue engineering applications.
    Nie L; Chen D; Suo J; Zou P; Feng S; Yang Q; Yang S; Ye S
    Colloids Surf B Biointerfaces; 2012 Dec; 100():169-76. PubMed ID: 22766294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].
    Lian Q; Zhuang P; Li C; Jin Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modified PHBV scaffolds by in situ UV polymerization: structural characteristic, mechanical properties and bone mesenchymal stem cell compatibility.
    Ke Y; Wang YJ; Ren L; Zhao QC; Huang W
    Acta Biomater; 2010 Apr; 6(4):1329-36. PubMed ID: 19853067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porogen-induced surface modification of nano-fibrous poly(L-lactic acid) scaffolds for tissue engineering.
    Liu X; Won Y; Ma PX
    Biomaterials; 2006 Jul; 27(21):3980-7. PubMed ID: 16580063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modular polylactic acid microparticle-based scaffolds prepared via microfluidic emulsion/solvent displacement process: fabrication, characterization, and in vitro mesenchymal stem cells interaction study.
    Salerno A; Levato R; Mateos-Timoneda MA; Engel E; Netti PA; Planell JA
    J Biomed Mater Res A; 2013 Mar; 101(3):720-32. PubMed ID: 22941938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering.
    Chung EJ; Sugimoto M; Koh JL; Ameer GA
    Tissue Eng Part C Methods; 2012 Feb; 18(2):113-21. PubMed ID: 21933018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of topology of poly(L-lactide-co-ε-caprolactone) scaffolds on the response of cultured human umbilical cord Wharton's jelly-derived mesenchymal stem cells and neuroblastoma cell lines.
    Thapsukhon B; Daranarong D; Meepowpan P; Suree N; Molloy R; Inthanon K; Wongkham W; Punyodom W
    J Biomater Sci Polym Ed; 2014 Jul; 25(10):1028-44. PubMed ID: 24856087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermally produced biodegradable scaffolds for cartilage tissue engineering.
    Lee SH; Kim BS; Kim SH; Kang SW; Kim YH
    Macromol Biosci; 2004 Aug; 4(8):802-10. PubMed ID: 15468274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(ester-urethane) scaffolds: effect of structure on properties and osteogenic activity of stem cells.
    Kiziltay A; Marcos-Fernandez A; San Roman J; Sousa RA; Reis RL; Hasirci V; Hasirci N
    J Tissue Eng Regen Med; 2015 Aug; 9(8):930-42. PubMed ID: 24376070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications.
    Li WJ; Cooper JA; Mauck RL; Tuan RS
    Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly-ε-caprolactone composite scaffolds for bone repair.
    Di Liddo R; Paganin P; Lora S; Dalzoppo D; Giraudo C; Miotto D; Tasso A; Barbon S; Artico M; Bianchi E; Parnigotto PP; Conconi MT; Grandi C
    Int J Mol Med; 2014 Dec; 34(6):1537-46. PubMed ID: 25319350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and characterization of injection molded poly (ε-caprolactone) and poly (ε-caprolactone)/hydroxyapatite scaffolds for tissue engineering.
    Cui Z; Nelson B; Peng Y; Li K; Pilla S; Li WJ; Turng LS; Shen C
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1674-81. PubMed ID: 24364976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scaffold pore size modulates in vitro osteogenesis of human adipose-derived stem/stromal cells.
    Huri PY; Ozilgen BA; Hutton DL; Grayson WL
    Biomed Mater; 2014 Aug; 9(4):045003. PubMed ID: 24945873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering.
    Shi X; Sitharaman B; Pham QP; Liang F; Wu K; Edward Billups W; Wilson LJ; Mikos AG
    Biomaterials; 2007 Oct; 28(28):4078-90. PubMed ID: 17576009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differentiation of human bone marrow mesenchymal stem cells grown in terpolyesters of 3-hydroxyalkanoates scaffolds into nerve cells.
    Wang L; Wang ZH; Shen CY; You ML; Xiao JF; Chen GQ
    Biomaterials; 2010 Mar; 31(7):1691-8. PubMed ID: 19962755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.