These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 27040250)

  • 1. Role of triton X-100 and hydrothermal treatment on the morphological features of nanoporous hydroxyapatite nanorods.
    Iyyappan E; Wilson P; Sheela K; Ramya R
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():554-62. PubMed ID: 27040250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-organization of hydroxyapatite nanorods through oriented attachment.
    Chen JD; Wang YJ; Wei K; Zhang SH; Shi XT
    Biomaterials; 2007 May; 28(14):2275-80. PubMed ID: 17296220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphology control of hydroxyapatite microcrystals: Synergistic effects of citrate and CTAB.
    Yang H; Wang Y
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():160-5. PubMed ID: 26952410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon nanotube-reinforced hydroxyapatite composite and their interaction with human osteoblast in vitro.
    Khalid P; Hussain MA; Rekha PD; Arun AB
    Hum Exp Toxicol; 2015 May; 34(5):548-56. PubMed ID: 25233896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manipulation of partially oriented hydroxyapatite building blocks to form flowerlike bundles without acid-base regulation.
    Wen Z; Wang Z; Chen J; Zhong S; Hu Y; Wang J; Zhang Q
    Colloids Surf B Biointerfaces; 2016 Jun; 142():74-80. PubMed ID: 26930036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controllable self-assembly of mesoporous hydroxyapatite.
    Chen J; Wang Z; Wen Z; Yang S; Wang J; Zhang Q
    Colloids Surf B Biointerfaces; 2015 Mar; 127():47-53. PubMed ID: 25638722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural characterization of zinc-substituted hydroxyapatite prepared by hydrothermal method.
    Li M; Xiao X; Liu R; Chen C; Huang L
    J Mater Sci Mater Med; 2008 Feb; 19(2):797-803. PubMed ID: 17665101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxyapatite nanocrystals: simple preparation, characterization and formation mechanism.
    Mohandes F; Salavati-Niasari M; Fathi M; Fereshteh Z
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():29-36. PubMed ID: 25491798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a hydroxyapatite sputtered film subject to hydrothermal treatment using FE-SEM and STEM.
    Ozeki K; Aoki H; Masuzawa T
    Biomed Mater Eng; 2011; 21(3):179-89. PubMed ID: 22072082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of different sized and porous hydroxyapatite nanorods without organic modifiers and their 5-fluorouracil release performance.
    Ji Y; Wang A; Wu G; Yin H; Liu S; Chen B; Liu F; Li X
    Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():14-23. PubMed ID: 26354235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of nano-hydroxyapatite within chitosan matrix.
    Rogina A; Ivanković M; Ivanković H
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4539-44. PubMed ID: 24094157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrothermal synthesis of hydroxyapatite powders using Response Surface Methodology (RSM).
    Ebrahimi S; Stephen Sipaut Mohd Nasri C; Bin Arshad SE
    PLoS One; 2021; 16(5):e0251009. PubMed ID: 34014966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel green template assisted synthesis of hydroxyapatite nanorods and their spectral characterization.
    Gopi D; Bhuvaneshwari N; Indira J; Kanimozhi K; Kavitha L
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Apr; 107():196-202. PubMed ID: 23419788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of hydroxyapatite whiskers by hydrothermal homogeneous precipitation using acetamide.
    Zhang H; Darvell BW
    Acta Biomater; 2010 Aug; 6(8):3216-22. PubMed ID: 20149902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong bonding strength between HA and (NH4)2S2O8-treated carbon/carbon composite by hydrothermal treatment and induction heating.
    Xiong XB; Zeng XR; Zou CL; Zhou JZ
    Acta Biomater; 2009 Jun; 5(5):1785-90. PubMed ID: 19135422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and characterization of selenite substituted hydroxyapatite.
    Ma J; Wang Y; Zhou L; Zhang S
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):440-5. PubMed ID: 25428093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One- and three-dimensional growth of hydroxyapatite nanowires during sol-gel-hydrothermal synthesis.
    Costa DO; Dixon SJ; Rizkalla AS
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1490-9. PubMed ID: 22296410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surfactant-assisted size control of hydroxyapatite nanorods for bone tissue engineering.
    Nga NK; Giang LT; Huy TQ; Viet PH; Migliaresi C
    Colloids Surf B Biointerfaces; 2014 Apr; 116():666-73. PubMed ID: 24274938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile synthesis and luminescence of Sr(5)(PO(4))(3)Cl:Eu(2+) nanorod bundles via a hydrothermal route.
    Song Y; You H; Yang M; Zheng Y; Liu K; Jia G; Huang Y; Zhang L; Zhang H
    Inorg Chem; 2010 Feb; 49(4):1674-8. PubMed ID: 20055509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrothermal synthesis and biocompatibility of hydroxyapatite nanorods.
    Li K; Tjong SC
    J Nanosci Nanotechnol; 2011 Dec; 11(12):10444-8. PubMed ID: 22408923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.