These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 27040365)

  • 1. Nanofaceting as a stamp for periodic graphene charge carrier modulations.
    Vondráček M; Kalita D; Kučera M; Fekete L; Kopeček J; Lančok J; Coraux J; Bouchiat V; Honolka J
    Sci Rep; 2016 Apr; 6():23663. PubMed ID: 27040365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designer Dirac fermions and topological phases in molecular graphene.
    Gomes KK; Mar W; Ko W; Guinea F; Manoharan HC
    Nature; 2012 Mar; 483(7389):306-10. PubMed ID: 22422264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directional massless Dirac fermions in a layered van der Waals material with one-dimensional long-range order.
    Yang TY; Wan Q; Yan DY; Zhu Z; Wang ZW; Peng C; Huang YB; Yu R; Hu J; Mao ZQ; Li S; Yang SA; Zheng H; Jia J-; Shi YG; Xu N
    Nat Mater; 2020 Jan; 19(1):27-33. PubMed ID: 31591532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bandgap opening by patterning graphene.
    Dvorak M; Oswald W; Wu Z
    Sci Rep; 2013; 3():2289. PubMed ID: 23887253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bandgap opening in graphene induced by patterned hydrogen adsorption.
    Balog R; Jørgensen B; Nilsson L; Andersen M; Rienks E; Bianchi M; Fanetti M; Laegsgaard E; Baraldi A; Lizzit S; Sljivancanin Z; Besenbacher F; Hammer B; Pedersen TG; Hofmann P; Hornekaer L
    Nat Mater; 2010 Apr; 9(4):315-9. PubMed ID: 20228819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coexisting massive and massless Dirac fermions in symmetry-broken bilayer graphene.
    Kim KS; Walter AL; Moreschini L; Seyller T; Horn K; Rotenberg E; Bostwick A
    Nat Mater; 2013 Oct; 12(10):887-92. PubMed ID: 23892785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bipolar doping of double-layer graphene vertical heterostructures with hydrogenated boron nitride.
    Liu Z; Wang RZ; Liu LM; Lau WM; Yan H
    Phys Chem Chem Phys; 2015 May; 17(17):11692-9. PubMed ID: 25866036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How good can CVD-grown monolayer graphene be?
    Chen B; Huang H; Ma X; Huang L; Zhang Z; Peng LM
    Nanoscale; 2014 Dec; 6(24):15255-61. PubMed ID: 25381813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An open canvas--2D materials with defects, disorder, and functionality.
    Zou X; Yakobson BI
    Acc Chem Res; 2015 Jan; 48(1):73-80. PubMed ID: 25514190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-temperature chemical vapor deposition growth of graphene from toluene on electropolished copper foils.
    Zhang B; Lee WH; Piner R; Kholmanov I; Wu Y; Li H; Ji H; Ruoff RS
    ACS Nano; 2012 Mar; 6(3):2471-6. PubMed ID: 22339048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous Films of Self-Assembled Graphene Quantum Dots for n-Type Doping of Graphene by UV-Triggered Charge Transfer.
    Park MJ; Kim Y; Kim Y; Hong BH
    Small; 2017 Sep; 13(35):. PubMed ID: 28092424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Primary Nucleation-Dominated Chemical Vapor Deposition Growth for Uniform Graphene Monolayers on Dielectric Substrate.
    Wang H; Xue X; Jiang Q; Wang Y; Geng D; Cai L; Wang L; Xu Z; Yu G
    J Am Chem Soc; 2019 Jul; 141(28):11004-11008. PubMed ID: 31265267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrogen-doped graphene sheets grown by chemical vapor deposition: synthesis and influence of nitrogen impurities on carrier transport.
    Lu YF; Lo ST; Lin JC; Zhang W; Lu JY; Liu FH; Tseng CM; Lee YH; Liang CT; Li LJ
    ACS Nano; 2013 Aug; 7(8):6522-32. PubMed ID: 23879622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene-Complex-Oxide Nanoscale Device Concepts.
    Jnawali G; Lee H; Lee JW; Huang M; Hsu JF; Bi F; Zhou R; Cheng G; D'Urso B; Irvin P; Eom CB; Levy J
    ACS Nano; 2018 Jun; 12(6):6128-6136. PubMed ID: 29750506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lithographically Patterned Functional Polymer-Graphene Hybrids for Nanoscale Electronics.
    Alon H; Stern C; Kirshner M; Sinai O; Wasserman M; Selhorst R; Gasper R; Ramasubramaniam A; Emrick T; Naveh D
    ACS Nano; 2018 Feb; 12(2):1928-1933. PubMed ID: 29378391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dry transfer of chemical-vapor-deposition-grown graphene onto liquid-sensitive surfaces for tunnel junction applications.
    Feng Y; Chen K
    Nanotechnology; 2015 Jan; 26(3):035302. PubMed ID: 25549272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A non-destructive n-doping method for graphene with precise control of electronic properties via atomic layer deposition.
    Han KS; Kalode PY; Koo Lee YE; Kim H; Lee L; Sung MM
    Nanoscale; 2016 Mar; 8(9):5000-5. PubMed ID: 26864992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Approaching ballistic transport in suspended graphene.
    Du X; Skachko I; Barker A; Andrei EY
    Nat Nanotechnol; 2008 Aug; 3(8):491-5. PubMed ID: 18685637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bipolar supercurrent in graphene.
    Heersche HB; Jarillo-Herrero P; Oostinga JB; Vandersypen LM; Morpurgo AF
    Nature; 2007 Mar; 446(7131):56-9. PubMed ID: 17330038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Temperature Quantum Hall Effect in Graphite-Gated Graphene Heterostructure Devices with High Carrier Mobility.
    Zhou S; Zhu M; Liu Q; Xiao Y; Cui Z; Guo C
    Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.